Soumyadip Choudhury
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soumyadip Choudhury.
Energy and Environmental Science | 2016
Juhan Lee; Benjamin Krüner; Aura Tolosa; S. Sathyamoorthi; Daekyu Kim; Soumyadip Choudhury; Kum-Hee Seo; Volker Presser
We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg−1, 30 W h L−1) and a maximum power of up to 1.5 kW kg−1 (600 W L−1, 250 W m−2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.
Journal of Materials Chemistry | 2012
Bijay P. Tripathi; Nidhi C. Dubey; Soumyadip Choudhury; Manfred Stamm
In an effort to reduce fouling, enhance membrane cleaning, and flux recovery, a hydrophilic polymer with amine functionality was grafted onto an active porous membrane surface. Poly(ethylene glycol) bis-(3-aminopropyl) terminated molecules were grafted on polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-graft-maleic anhydride via condensation reaction between the anhydride ring and amine group. Structural analysis, hydrophilicity, water permeability, and rejection performance of the membranes were assessed for its suitability in separation and water purification processes. The hydrophilicity, permeability, and solute rejection property of the membranes increased upon anchoring of amino terminated PEG brushes. The good antifouling behavior (for protein and bacteria) and pure water permeability along with high rejection property showed its suitability for water purification and separation processes.
ACS Applied Materials & Interfaces | 2016
Juhan Lee; Soumyadip Choudhury; D. Weingarth; Daekyu Kim; Volker Presser
We demonstrate stable hybrid electrochemical energy storage performance of a redox-active electrolyte, namely potassium ferricyanide in aqueous media in a supercapacitor-like setup. Challenging issues associated with such a system are a large leakage current and high self-discharge, both stemming from ion redox shuttling through the separator. The latter is effectively eliminated when using an ion exchange membrane instead of a porous separator. Other critical factors toward the optimization of a redox-active electrolyte system, especially electrolyte concentration and volume of electrolyte, have been studied by electrochemical methods. Finally, excellent long-term stability is demonstrated up to 10 000 charge/discharge cycles at 1.2 and 1.8 V, with a broad maximum stability window of up to 1.8 V cell voltage as determined via cyclic voltammetry. An energy capacity of 28.3 Wh/kg or 11.4 Wh/L has been obtained from such cells, taking the nonlinearity of the charge-discharge profile into account. The power performance of our cell has been determined to be 7.1 kW/kg (ca. 2.9 kW/L or 1.2 kW/m(2)). These ratings are higher compared to the same cell operated in aqueous sodium sulfate. This hybrid electrochemical energy storage system is believed to find a strong foothold in future advanced energy storage applications.
Journal of Materials Chemistry | 2017
Pattarachai Srimuk; Juhan Lee; Simon Fleischmann; Soumyadip Choudhury; Nicolas Jäckel; Marco Zeiger; Choonsoo Kim; Mesut Aslan; Volker Presser
This work establishes molybdenum disulfide/carbon nanotube electrodes for the desalination of high molar saline water. Capitalizing on the two-dimensional layered structure of MoS2, both cations and anions can be effectively removed from a feed water stream by faradaic ion intercalation. The approach is based on the setup of capacitive deionization (CDI), where an effluent water stream is desalinated via the formation of an electrical double-layer at two oppositely polarized carbon electrodes. Yet, CDI can only be effectively applied to low concentrated solutions due to the intrinsic limitation of the electrosorption mechanism. By replacing the conventional porous carbon with MoS2/CNT binder-free electrodes, deionization of sodium and chloride ions was achieved by ion intercalation instead of ion electrosorption. This enabled stable desalination performance over 25 cycles in various molar concentrations, with salt adsorption capacities of 10, 13, 18, and 25 mg g−1 in 5, 25, 100, and 500 mM NaCl aqueous solutions, respectively. This novel approach of faradaic deionization (FDI) paves the way towards a more energy-efficient desalination of brackish water and even sea water.
Sustainable Energy and Fuels | 2017
Soumyadip Choudhury; Marco Zeiger; Pau Massuti-Ballester; Simon Fleischmann; Petr Formanek; Lars Borchardt; Volker Presser
In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
Chemsuschem | 2017
Juhan Lee; Pattarachai Srimuk; Katherine Aristizabal; Choonsoo Kim; Soumyadip Choudhury; Yoon-Chae Nah; Frank Mücklich; Volker Presser
A hybrid membrane pseudocapacitive deionization (MPDI) system consisting of a hydrated vanadium pentoxide (hV2 O5 )-decorated multi-walled carbon nanotube (MWCNT) electrode and one activated carbon electrode enables sodium ions to be removed by pseudocapacitive intercalation with the MWCNT-hV2 O5 electrode and chloride ion to be removed by non-faradaic electrosorption of the porous carbon electrode. The MWCNT-hV2 O5 electrode was synthesized by electrochemical deposition of hydrated vanadium pentoxide on the MWCNT paper. The stable electrochemical operating window for the MWCNT-hV2 O5 electrode was between -0.5 V and +0.4 V versus Ag/AgCl, which provided a specific capacity of 44 mAh g-1 (corresponding with 244 F g-1 ) in aqueous 1 m NaCl. The desalination performance of the MPDI system was investigated in aqueous 200 mm NaCl (brackish water) and 600 mm NaCl (seawater) solutions. With the aid of an anion and a cation exchange membrane, the MPDI hybrid cell was operated from -0.4 to +0.8 V cell voltage without crossing the reduction and oxidation potential limit of both electrodes. For the 600 mm NaCl solution, the NaCl salt adsorption capacity of the cell was 23.6±2.2 mg g-1 , which is equivalent to 35.7±3.3 mg g-1 normalized to the mass of the MWCNT-hV2 O5 electrode. Additionally, we propose a normalization method for the electrode material with faradaic reactions based on sodium uptake capacities.
Sustainable Energy and Fuels | 2018
Soumyadip Choudhury; Pattarachai Srimuk; Kumar Raju; Aura Tolosa; Simon Fleischmann; Marco Zeiger; Kenneth I. Ozoemena; Lars Borchardt; Volker Presser
A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
Sustainable Energy and Fuels | 2017
Juhan Lee; Sylvain Badie; Pattarachai Srimuk; Alexander Ridder; Hwirim Shim; Soumyadip Choudhury; Yoon-Chae Nah; Volker Presser
Electrodeposition is a simple and effective method for the synthesis of disordered hydrated vanadium pentoxide (V2O5·nH2O). For the synthesis of energy storage electrodes with high power performance, electrodeposition of hydrated V2O5 inside carbon micropores is particularly attractive to synergize electric-double layer formation and lithium ion intercalation. Here, we demonstrate that hydrated V2O5 can be effectively electrodeposited in carbon micropores of activated carbon cloth. Our study indicates that carbon pores larger than 1 nm are essential for the effective decoration with hydrated V2O5. A thermal treatment after the electrodeposition is often used to enhance the crystal structure of hydrated V2O5. However, thermal annealing of the hydrated vanadium pentoxide decorated activated carbon cloth under an oxygen-rich environment at high temperature (>330 °C) leads to a significant loss of pore volume, leading to a decreased electrochemical performance. At low annealing temperature (200 °C), the vanadium pentoxide electrodeposited activated carbon cloth electrode exhibits a maximum specific capacity of 137 mA h g−1 with stable cycle performance over 1600 cycles at a rate of 4C.
Journal of Materials Chemistry B | 2013
Bijay P. Tripathi; Nidhi C. Dubey; Soumyadip Choudhury; Frank Simon; Manfred Stamm
Journal of Power Sources | 2014
Mukesh Agrawal; Soumyadip Choudhury; Katharina Gruber; Frank Simon; Dieter Fischer; Victoria Albrecht; Michael Göbel; Stefan Koller; Manfred Stamm; Leonid Ionov