Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sreemanti Basu is active.

Publication


Featured researches published by Sreemanti Basu.


Journal of Immunology | 2012

A Novel IL-10–Independent Regulatory Role for B Cells in Suppressing Autoimmunity by Maintenance of Regulatory T Cells via GITR Ligand

Avijit Ray; Sreemanti Basu; Calvin B. Williams; Nita H. Salzman; Bonnie N. Dittel

B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4+Foxp3+ T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.


Immunologic Research | 2011

Unraveling the Complexities of Cannabinoid Receptor 2 (CB2) Immune Regulation in Health and Disease

Sreemanti Basu; Bonnie N. Dittel

It has become clear that the endocannabinoid system is a potent regulator of immune responses, with the cannabinoid receptor 2 (CB2) as the key component due to its high expression by all immune subtypes. CB2 has been shown to regulate immunity by a number of mechanisms including development, migration, proliferation, and effector functions. In addition, CB2 has been shown to modulate the function of all immune cell types examined to date. CB2 is a Gi-protein-coupled receptor and thus exhibits a complex pharmacology allowing both stimulatory and inhibitory signaling that depends on receptor expression levels, ligand concentration, and cell lineage specificities. Here, we discuss both in vitro and in vivo experimental evidence that CB2 is a potent regulator of immune responses making it a prime target for the treatment of inflammatory diseases.


Autoimmunity | 2012

Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis.

Monica K. Mann; Avijit Ray; Sreemanti Basu; Christopher L. Karp; Bonnie N. Dittel

A dual role of B cells in experimental autoimmune encephalomyelitis (EAE), the animal model of the human autoimmune disease multiple sclerosis (MS), has been established. In the first role, B cells contribute to the pathogenesis of EAE through the production of anti-myelin antibodies that contribute to demyelination. On the contrary, B cells have also been shown to have protective functions in that they play an essential role in the spontaneous recovery from EAE. In this review, we summarize studies conducted in a number of species demonstrating the conditions under which B cells are pathogenic in EAE. We also discuss the phenotype and anti-inflammatory mechanisms of regulatory B cells.


Journal of Immunology | 2011

Cannabinoid Receptor 2 Is Critical for the Homing and Retention of Marginal Zone B Lineage Cells and for Efficient T-Independent Immune Responses

Sreemanti Basu; Avijit Ray; Bonnie N. Dittel

The endocannabinoid system has emerged as an important regulator of immune responses, with the cannabinoid receptor 2 (CB2) and its principle ligand 2-archidonoylglycerol playing a major role. How CB2 regulates B cell functions is not clear, even though they express the highest levels of CB2 among immune cell subsets. In this study, we show that CB2-deficient mice have a significant reduction in the absolute number of marginal zone (MZ) B cells and their immediate precursor, transitional-2 MZ precursor. The loss of MZ lineage cells in CB2−/− mice was shown to be B cell intrinsic using bone marrow chimeras and was not due to a developmental or functional defect as determined by B cell phenotype, proliferation, and Ig production. Furthermore, CB2−/− B cells were similar to wild type in their apoptosis, cell turnover, and BCR and Notch-2 signaling. We then demonstrated that CB2−/− MZ lineage B cells were less efficient at homing to the MZ and that their subsequent retention was also regulated by CB2. CB2−/− mice immunized with T-independent Ags produced significantly less Ag-specific IgM. This study demonstrates that CB2 positively regulates T-independent immune responses by controlling the localization and positioning of MZ lineage cells to the MZ.


Seminars in Immunology | 2014

What we know and do not know about the cannabinoid receptor 2 (CB2)

Anna Maria Malfitano; Sreemanti Basu; Katarzyna Maresz; Maurizio Bifulco; Bonnie N. Dittel

It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.


PLOS ONE | 2013

Cannabinoid Receptor 2 (CB2) Plays a Role in the Generation of Germinal Center and Memory B Cells, but Not in the Production of Antigen-Specific IgG and IgM, in Response to T-dependent Antigens

Sreemanti Basu; Avijit Ray; Bonnie N. Dittel

The cannabinoid receptor 2 (CB2) has been reported to modulate B cell functions including migration, proliferation and isotype class switching. Since these processes are required for the generation of the germinal center (GC) and antigen-specific plasma and memory cells following immunization with a T-dependent antigen, CB2 has the capacity to alter the quality and magnitude of T-dependent immune responses. To address this question, we immunized WT and CB2−/− mice with the T-dependent antigen 4-hydroxy-3-nitrophenylacetyl (NP)-chicken-gamma-globulin (CGG) and measured GC B cell formation and the generation of antigen-specific B cells and serum immunoglobulin (Ig). While there was a significant reduction in the number of splenic GC B cells in CB2−/− mice early in the response there was no detectable difference in the number of NP-specific IgM and IgG1 plasma cells. There was also no difference in NP-specific IgM and class switched IgG1 in the serum. In addition, we found no defect in the homing of plasma cells to the bone marrow (BM) and affinity maturation, although memory B cell cells in the spleen were reduced in CB2−/− mice. CB2-deficient mice also generated similar levels of antigen-specific IgM and IgG in the serum as WT following immunization with sheep red blood cells (sRBC). This study demonstrates that although CB2 plays a role in promoting GC and memory B cell formation/maintenance in the spleen, it is dispensable on all immune cell types required for the generation of antigen-specific IgM and IgG in T-dependent immune responses.


Journal of Immunology | 2014

An Increase in Tolerogenic Dendritic Cell and Natural Regulatory T Cell Numbers during Experimental Autoimmune Encephalomyelitis in Rras−/− Mice Results in Attenuated Disease

Avijit Ray; Sreemanti Basu; Nichole M. Miller; Andrew M. Chan; Bonnie N. Dittel

R-Ras is a member of the Ras superfamily of small GTPases, which are regulators of various cellular processes, including adhesion, survival, proliferation, trafficking, and cytokine production. R-Ras is expressed by immune cells and has been shown to modulate dendritic cell (DC) function in vitro and has been associated with liver autoimmunity. We used Rras-deficient mice to study the mechanism whereby R-Ras contributes to autoimmunity using experimental autoimmune encephalomyelitis (EAE), a mouse model of the CNS autoimmune disease multiple sclerosis. We found that a lack of R-Ras in peripheral immune cells resulted in attenuated EAE disease. Further investigation revealed that, during EAE, absence of R-Ras promoted the formation of MHC IIlow DC concomitant with a significant increase in proliferation of natural regulatory T cells, resulting in an increase in their cell numbers in the periphery. Our study suggests a novel role for R-Ras in promoting autoimmunity through negative regulation of natural regulatory T cell numbers by inhibiting the development of MHCIIlow DC with tolerogenic potential.


Journal of Immunology | 2015

Gut Microbial Dysbiosis Due to Helicobacter Drives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages

Avijit Ray; Sreemanti Basu; Raad Z. Gharaibeh; Lydia C. Cook; Ranjit Kumar; Elliot J. Lefkowitz; Catherine Walker; Casey D. Morrow; Craig L. Franklin; Terrence L. Geiger; Nita H. Salzman; Anthony A. Fodor; Bonnie N. Dittel

It is clear that IL-10 plays an essential role in maintaining homeostasis in the gut in response to the microbiome. However, it is unknown whether IL-10 also facilitates immune homeostasis at distal sites. To address this question, we asked whether splenic immune populations were altered in IL-10–deficient (Il10−/−) mice in which differences in animal husbandry history were associated with susceptibility to spontaneous enterocolitis that is microbiome dependent. The susceptible mice exhibited a significant increase in splenic macrophages, neutrophils, and marginal zone (MZ) B cells that was inhibited by IL-10 signaling in myeloid, but not B cells. The increase in macrophages was due to increased proliferation that correlated with a subsequent enhancement in MZ B cell differentiation. Cohousing and antibiotic treatment studies suggested that the alteration in immune homeostasis in the spleen was microbiome dependent. The 16S rRNA sequencing revealed that susceptible mice harbored a different microbiome with a significant increase in the abundance of the bacterial genus Helicobacter. The introduction of Helicobacter hepaticus to the gut of nonsusceptible mice was sufficient to drive macrophage expansion and MZ B cell development. Given that myeloid cells and MZ B cells are part of the first line of defense against blood-borne pathogens, their increase following a breach in the gut epithelial barrier would be protective. Thus, IL-10 is an essential gatekeeper that maintains immune homeostasis at distal sites that can become functionally imbalanced upon the introduction of specific pathogenic bacteria to the intestinal track.


Methods of Molecular Biology | 2014

Regulatory B cells in experimental autoimmune encephalomyelitis (EAE).

Avijit Ray; Sreemanti Basu

B cells are thought to play a pathogenic role in multiple sclerosis (MS), an autoimmune disease affecting the central nervous system (CNS). This idea is supported by the reduction of disease in MS patients undergoing antibody-mediated B cell depletion therapy. In contrast, in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, B cells have been shown to play a regulatory role. This is suggestive of a dual role for B cells in CNS autoimmunity. It is possible that a critical balance between the pathogenic and regulatory populations of B cells might be involved in the manifestation of the disease. Although in mice, different B cell subsets have been shown to exert immunoregulation through varied mechanisms, the phenotype of regulatory B cells in humans and factors affecting their function are not well known. Also, the origin and development of regulatory B cells is not known. It is important to thoroughly identify the different populations of B cells that might be involved in suppressing CNS autoimmunity, their mode of function and factors that regulate their immunosuppressive properties for using regulatory B cells as a therapy for MS. Here we present methods to study the phenotype and mechanisms of immune suppression by B cells in different mouse models of EAE.


Journal of Immunological Methods | 2013

Differential Representation of B Cell Subsets in Mixed Bone Marrow Chimera Mice Due to Expression of Allelic Variants of CD45 (CD45.1/CD45.2)

Sreemanti Basu; Avijit Ray; Bonnie N. Dittel

The CD45 congenic marker system is a highly utilized technique to track hematopoietic cells following bone marrow transplantation (BMT), with CD45.1 and CD45.2 being efficiently distinguished by flow cytometry. During the analysis of control mixed BM chimera mice in which lethally irradiated recipients were transplanted with an equal number of BM cells from WT CD45.1 and WT CD45.2 mice, we observed an unequal reconstitution of specific B cell subsets in the bone marrow (BM), lymph node (LN) and spleen. Specifically, in the BM and LN, there was an increase in the percentage of CD45.2 mature B cells. In the spleen, an increase in the percentage of CD45.2 transitional (T) 1 and T2 cells was observed. In contrast, the percentage of splenic CD45.1 marginal zone (MZ) B cells was significantly increased. When we compared the percentage of B cell subsets in unmanipulated WT CD45.1 and WT CD45.2 mice, we found that WT CD45.2 mice had significantly more LN B cells while WT CD45.1 mice exhibited an increase in MZ B cells. These data indicate that the alteration in the ratio of CD45.1 and CD45.2 B cell subsets in mixed chimera mice is a cell-intrinsic effect. Thus whenever the CD45 congenic system is used to track two genetically distinct populations of immune cells WT chimeras must be generated to allow normalization of the experimental data to avoid the reporting of unintentionally skewed data.

Collaboration


Dive into the Sreemanti Basu's collaboration.

Top Co-Authors

Avatar

Bonnie N. Dittel

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Avijit Ray

Gulf Coast Regional Blood Center

View shared research outputs
Top Co-Authors

Avatar

Nita H. Salzman

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Calvin B. Williams

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Monica K. Mann

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony A. Fodor

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar

Casey D. Morrow

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge