Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacey L. Burgess is active.

Publication


Featured researches published by Stacey L. Burgess.


Mbio | 2014

Bone Marrow Dendritic Cells from Mice with an Altered Microbiota Provide Interleukin 17A-Dependent Protection against Entamoeba histolytica Colitis

Stacey L. Burgess; Erica L. Buonomo; Maureen Carey; Carrie A. Cowardin; Caitlin Naylor; Zannatun Noor; Marsha Wills-Karp; William A. Petri

ABSTRACT There is an emerging paradigm that the human microbiome is central to many aspects of health and may have a role in preventing enteric infection. Entamoeba histolytica is a major cause of amebic diarrhea in developing countries. It colonizes the colon lumen in close proximity to the gut microbiota. Interestingly, not all individuals are equally susceptible to E. histolytica infection. Therefore, as the microbiota is highly variable within individuals, we sought to determine if a component of the microbiota could regulate susceptibility to infection. In studies utilizing a murine model, we demonstrated that colonization of the gut with the commensal Clostridia-related bacteria known as segmented filamentous bacteria (SFB) is protective during E. histolytica infection. SFB colonization in this model was associated with elevated cecal levels of interleukin 17A (IL-17A), dendritic cells, and neutrophils. Bone marrow-derived dendritic cells (BMDCs) from SFB-colonized mice had higher levels of IL-23 production in response to stimulation with trophozoites. Adoptive transfer of BMDCs from an SFB+ to an SFB− mouse was sufficient to provide protection against E. histolytica. IL-17A induction during BMDC transfer was necessary for this protection. This work demonstrates that intestinal colonization with a specific commensal bacterium can provide protection during amebiasis in a murine model. Most importantly, this work demonstrates that the microbiome can mediate protection against an enteric infection via extraintestinal effects on bone marrow-derived dendritic cells. IMPORTANCE Entamoeba histolytica is the causative agent of amebiasis, an infectious disease that contributes significantly to morbidity and mortality due to diarrhea in the developing world. We showed in a murine model that colonization with the commensal members of the Clostridia known as SFB provides protection against E. histolytica and that dendritic cells from SFB-colonized mice alone can recapitulate protection. Understanding interactions between enteropathogens, commensal intestinal bacteria, and the mucosal immune response, including dendritic cells, will help in the development of effective treatments for this disease and other infectious and inflammatory diseases. The demonstration of immune-mediated protection due to communication from the microbiome to the bone marrow represents an emerging field of study that will yield unique approaches to the development of these treatments. Entamoeba histolytica is the causative agent of amebiasis, an infectious disease that contributes significantly to morbidity and mortality due to diarrhea in the developing world. We showed in a murine model that colonization with the commensal members of the Clostridia known as SFB provides protection against E. histolytica and that dendritic cells from SFB-colonized mice alone can recapitulate protection. Understanding interactions between enteropathogens, commensal intestinal bacteria, and the mucosal immune response, including dendritic cells, will help in the development of effective treatments for this disease and other infectious and inflammatory diseases. The demonstration of immune-mediated protection due to communication from the microbiome to the bone marrow represents an emerging field of study that will yield unique approaches to the development of these treatments.


Nature microbiology | 2016

The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia

Carrie A. Cowardin; Erica L. Buonomo; Mahmoud M. Saleh; Madeline G. Wilson; Stacey L. Burgess; Sarah A. Kuehne; Carsten Schwan; Anna M. Eichhoff; Friedrich Koch-Nolte; Dena Lyras; Klaus Aktories; Nigel P. Minton; William A. Petri

Clostridium difficile is the most common hospital acquired pathogen in the USA, and infection is, in many cases, fatal. Toxins A and B are its major virulence factors, but expression of a third toxin, known as C. difficile transferase (CDT), is increasingly common. An adenosine diphosphate (ADP)-ribosyltransferase that causes actin cytoskeletal disruption, CDT is typically produced by the major, hypervirulent strains and has been associated with more severe disease. Here, we show that CDT enhances the virulence of two PCR-ribotype 027 strains in mice. The toxin induces pathogenic host inflammation via a Toll-like receptor 2 (TLR2)-dependent pathway, resulting in the suppression of a protective host eosinophilic response. Finally, we show that restoration of TLR2-deficient eosinophils is sufficient for protection from a strain producing CDT. These findings offer an explanation for the enhanced virulence of CDT-expressing C. difficile and demonstrate a mechanism by which this binary toxin subverts the host immune response.


The Journal of Infectious Diseases | 2016

Role of the gut microbiota of children in diarrhea due to the protozoan parasite Entamoeba histolytica

Carol A. Gilchrist; Sarah E. Petri; Brittany N. Schneider; Daniel Reichman; Nona Jiang; Sharmin Begum; Koji Watanabe; Caroline S. Jansen; K. Pamela Elliott; Stacey L. Burgess; Jennie Z. Ma; Masud Alam; Mamun Kabir; Rashidul Haque; William A. Petri

Background. An estimated 1 million children die each year before their fifth birthday from diarrhea. Previous population-based surveys of pediatric diarrheal diseases have identified the protozoan parasite Entamoeba histolytica, the etiological agent of amebiasis, as one of the causes of moderate-to-severe diarrhea in sub-Saharan Africa and South Asia. Methods. We prospectively studied the natural history of E. histolytica colonization and diarrhea among infants in an urban slum of Dhaka, Bangladesh. Results. Approximately 80% of children were infected with E. histolytica by the age of 2 years. Fecal anti-galactose/N-acetylgalactosamine lectin immunoglobulin A was associated with protection from reinfection, while a high parasite burden and expansion of the Prevotella copri level was associated with diarrhea. Conclusions. E. histolytica infection was prevalent in this population, with most infections asymptomatic and diarrhea associated with both the amount of parasite and the composition of the microbiota.


Molecular metabolism | 2013

Differential colonization with segmented filamentous bacteria and Lactobacillus murinus do not drive divergent development of diet-induced obesity in C57BL/6 mice.

Isaac T.W. Harley; Daniel A. Giles; Paul T. Pfluger; Stacey L. Burgess; Stephanie Walters; Jazzminn Hembree; Christine Raver; Cheryl L. Rewerts; Jordan Downey; Leah M. Flick; Traci E. Stankiewicz; Jaclyn W. McAlees; Marsha Wills-Karp; R. Balfour Sartor; Senad Divanovic; Matthias H. Tschöp; Christopher L. Karp

Alterations in the gut microbiota have been proposed to modify the development and maintenance of obesity and its sequelae. Definition of underlying mechanisms has lagged, although the ability of commensal gut microbes to drive pathways involved in inflammation and metabolism has generated compelling, testable hypotheses. We studied C57BL/6 mice from two vendors that differ in their obesogenic response and in their colonization by specific members of the gut microbiota having well-described roles in regulating gut immune responses. We confirmed the presence of robust differences in weight gain in mice from these different vendors during high fat diet stress. However, neither specific, highly divergent members of the gut microbiota (Lactobacillus murinus, segmented filamentous bacteria) nor the horizontally transmissible gut microbiota were found to be responsible. Constitutive differences in locomotor activity were observed, however. These data underscore the importance of selecting appropriate controls in this widely used model of human obesity.


Mbio | 2014

Leptin Receptor Mutation Results in Defective Neutrophil Recruitment to the Colon during Entamoeba histolytica Infection

Caitlin Naylor; Stacey L. Burgess; Rajat Madan; Erica L. Buonomo; Khadija Razzaq; Katherine S. Ralston; William A. Petri

ABSTRACT Amebiasis is an enteric infection caused by Entamoeba histolytica, with symptoms ranging in severity from asymptomatic colonization to dysentery. Humans with the Q223R leptin receptor mutation have increased susceptibility to amebiasis, but the mechanism has been unclear. Using a mouse model expressing the mutation, we tested the impact of the Q223R mutation on the innate immune response to E. histolytica infection. The 223R mutation resulted in delayed clearance of amebae from the cecum, as had been previously observed. We found that neutrophil influx to the site of the infection was reduced 12 h after infection in 223R mice. Depletion of neutrophils with anti-Ly6G monoclonal antibody increased susceptibility of wild-type mice to infection, supporting the importance of neutrophils in innate defense. Leptin expression was increased in the cecum by E. histolytica infection, suggesting that leptin could serve as a homing signal for neutrophils to the gut. Interestingly, neutrophils from mice with the 223R mutation had diminished chemotaxis toward leptin. This impaired chemotaxis likely explained the reduced gut infiltration of neutrophils. The newly recognized effect of the leptin receptor Q223R mutation on neutrophil chemotaxis and the impact of this mutation on multiple infectious diseases suggest a broader impact of this mutation on susceptibility to disease. IMPORTANCE The Q223R leptin receptor mutation results in increased susceptibility of children and adults to E. histolytica, one of the leading causes of diarrhea morbidity and mortality in children of the developing world. Here we show that the mutation results in reduced neutrophil infiltration to the site of infection. This decreased infiltration is likely due to the mutation’s impact on neutrophil chemotaxis toward leptin, an inflammatory agent upregulated in the cecum after infection. The significance of this work thus extends beyond understanding E. histolytica susceptibility by also providing insight into the potential impact of leptin on neutrophil function in other states of altered leptin signaling, which include both malnutrition and obesity. The Q223R leptin receptor mutation results in increased susceptibility of children and adults to E. histolytica, one of the leading causes of diarrhea morbidity and mortality in children of the developing world. Here we show that the mutation results in reduced neutrophil infiltration to the site of infection. This decreased infiltration is likely due to the mutation’s impact on neutrophil chemotaxis toward leptin, an inflammatory agent upregulated in the cecum after infection. The significance of this work thus extends beyond understanding E. histolytica susceptibility by also providing insight into the potential impact of leptin on neutrophil function in other states of altered leptin signaling, which include both malnutrition and obesity.


Current tropical medicine reports | 2016

The Intestinal Bacterial Microbiome and E. histolytica Infection.

Stacey L. Burgess; William A. Petri

Entamoeba histolytica, the etiological agent of amebiasis, is a significant cause of pediatric diarrhea in South Asia and sub-Saharan Africa. The clinical outcome of an E. histolytica exposure varies enormously and can present as diarrhea, dysentery, or amebic liver abscess. Host and parasite factors likely contribute to the outcome of infection with the parasite, but do not explain the wide variation in presentation of disease. This suggests that other environmental factors affect disease. An emerging body of work suggests that the host intestinal bacterial microbiome may have a significant influence on the development and outcome of amebiasis.


Infection and Immunity | 2016

Role of Serum Amyloid A, Granulocyte-Macrophage Colony-Stimulating Factor, and Bone Marrow Granulocyte-Monocyte Precursor Expansion in Segmented Filamentous Bacterium-Mediated Protection from Entamoeba histolytica

Stacey L. Burgess; Mahmoud M. Saleh; Carrie A. Cowardin; Erica L. Buonomo; Zannatun Noor; Koji Watanabe; Mayuresh M. Abhyankar; Stephane Lajoie; Marsha Wills-Karp; William A. Petri

ABSTRACT Intestinal segmented filamentous bacteria (SFB) protect from ameba infection, and protection is transferable with bone marrow dendritic cells (BMDCs). SFB cause an increase in serum amyloid A (SAA), suggesting that SAA might mediate SFBs effects on BMDCs. Here we further explored the role of bone marrow in SFB-mediated protection. Transient gut colonization with SFB or SAA administration alone transiently increased the H3K27 histone demethylase Jmjd3, persistently increased bone marrow Csf2ra expression and granulocyte monocyte precursors (GMPs), and protected from ameba infection. Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked protection from ameba infection. These results indicate that alteration of the microbiota and systemic exposure to SAA can influence myelopoiesis and susceptibility to amebiasis via epigenetic mechanisms. Gut microbiota-marrow communication is a previously unrecognized mechanism of innate protection from infection.


PLOS Pathogens | 2017

Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis

Koji Watanabe; Carol A. Gilchrist; Jashim Uddin; Stacey L. Burgess; Mayuresh M. Abhyankar; Shannon N. Moonah; Zannatun Noor; Jeffrey R. Donowitz; Brittany N. Schneider; Tuhinur Arju; Emtiaz Ahmed; Mamun Kabir; Masud Alam; Rashidul Haque; Patcharin Pramoonjago; Borna Mehrad; William A. Petri

The disease severity of Entamoeba histolytica infection ranges from asymptomatic to life-threatening. Recent human and animal data implicate the gut microbiome as a modifier of E. histolytica virulence. Here we have explored the association of the microbiome with susceptibility to amebiasis in infants and in the mouse model of amebic colitis. Dysbiosis occurred symptomatic E. histolytica infection in children, as evidenced by a lower Shannon diversity index of the gut microbiota. To test if dysbiosis was a cause of susceptibility, wild type C57BL/6 mice (which are innately resistant to E. histiolytica infection) were treated with antibiotics prior to cecal challenge with E. histolytica. Compared with untreated mice, antibiotic pre-treated mice had more severe colitis and delayed clearance of E. histolytica. Gut IL-25 and mucus protein Muc2, both shown to provide innate immunity in the mouse model of amebic colitis, were lower in antibiotic pre-treated mice. Moreover, dysbiotic mice had fewer cecal neutrophils and myeloperoxidase activity. Paradoxically, the neutrophil chemoattractant chemokines CXCL1 and CXCL2, as well as IL-1β, were higher in the colon of mice with antibiotic-induced dysbiosis. Neutrophils from antibiotic pre-treated mice had diminished surface expression of the chemokine receptor CXCR2, potentially explaining their inability to migrate to the site of infection. Blockade of CXCR2 increased susceptibility of control non-antibiotic treated mice to amebiasis. In conclusion, dysbiosis increased the severity of amebic colitis due to decreased neutrophil recruitment to the gut, which was due in part to decreased surface expression on neutrophils of CXCR2.


Antimicrobial Agents and Chemotherapy | 2014

Preclinical Studies of Amixicile, a Systemic Therapeutic Developed for Treatment of Clostridium difficile Infections That Also Shows Efficacy against Helicobacter pylori

Paul S. Hoffman; Alexandra M. Bruce; Igor N. Olekhnovich; Cirle A. Warren; Stacey L. Burgess; Raquel Hontecillas; Monica Viladomiu; Josep Bassaganya-Riera; Richard L. Guerrant; Timothy L. Macdonald

ABSTRACT Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 μM (NTZ was toxic above 10 μM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · μg/ml (30 mg/kg dose) to 328 h · μg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 μg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI.


Infection and Immunity | 2016

Glucosylation Drives the Innate Inflammatory Response to Clostridium difficile Toxin A

Carrie A. Cowardin; Brianna M. Jackman; Zannatun Noor; Stacey L. Burgess; Andrew L. Feig; William A. Petri

ABSTRACT Clostridium difficile is a major, life-threatening hospital-acquired pathogen that causes mild to severe colitis in infected individuals. The tissue destruction and inflammation which characterize C. difficile infection (CDI) are primarily due to the Rho-glucosylating toxins A and B. These toxins cause epithelial cell death and induce robust inflammatory signaling by activating the transcription factor NF-κB, leading to chemokine and cytokine secretion. The toxins also activate the inflammasome complex, which leads to secretion of the pyrogenic cytokine IL-1β. In this study, we utilized glucosylation-deficient toxin A to show that activation of the inflammasome by this toxin is dependent on Rho glucosylation, confirming similar findings reported for toxin B. We also demonstrated that tissue destruction and in vivo inflammatory cytokine production are critically dependent on the enzymatic activity of toxin A, suggesting that inhibiting toxin glucosyltransferase activity may be effective in combating this refractory disease.

Collaboration


Dive into the Stacey L. Burgess's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol A. Gilchrist

University of Virginia Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge