Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stacy M. Philpott is active.

Publication


Featured researches published by Stacy M. Philpott.


Conservation Biology | 2008

Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees.

Stacy M. Philpott; Wayne J. Arendt; Inge Armbrecht; Peter Bichier; Thomas V. Diestch; Caleb E. Gordon; Russell S. Greenberg; Ivette Perfecto; Roberto Reynoso-Santos; Lorena Soto-Pinto; Cesar Tejeda-Cruz; Guadalupe Williams-Linera; Jorge Valenzuela; Jose Manuel Zolotoff

Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions.We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee-management systems compared with forests? Is species loss greater for forest species or for particular functional groups?and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee(grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted,and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade-offs between biodiversity conservation and farmer livelihoods stemming from coffee production.


Ecological Entomology | 2006

Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function

Stacy M. Philpott; Inge Armbrecht

Abstract 1. Intensive agricultural practices drive biodiversity loss with potentially drastic consequences for ecosystem services. To advance conservation and production goals, agricultural practices should be compatible with biodiversity. Traditional or less intensive systems (i.e. with fewer agrochemicals, less mechanisation, more crop species) such as shaded coffee and cacao agroforests are highlighted for their ability to provide a refuge for biodiversity and may also enhance certain ecosystem functions (i.e. predation).


Ecology | 2008

Birds as predators in tropical agroforestry systems.

Sunshine A. Van Bael; Stacy M. Philpott; Russell Greenberg; Peter Bichier; Nicholas A. Barber; Kailen A. Mooney; Daniel S. Gruner

Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.


Ecology Letters | 2009

Climatic drivers of hemispheric asymmetry in global patterns of ant species richness.

Robert R. Dunn; Donat Agosti; Alan N. Andersen; Xavier Arnan; Carsten A. Brühl; Xim Cerdá; Aaron M. Ellison; Brian L. Fisher; Matthew C. Fitzpatrick; Heloise Gibb; Nicholas J. Gotelli; Aaron D. Gove; Benoît S. Guénard; Milan Janda; Michael Kaspari; Edward J. Laurent; Jean-Philippe Lessard; John T. Longino; Jonathan Majer; Sean B. Menke; Terrence P. McGlynn; Catherine L. Parr; Stacy M. Philpott; Martin Pfeiffer; Javier Retana; Andrew V. Suarez; Heraldo Heraldo Vasconcelos; Michael D. Weiser; Nathan J. Sanders

Although many taxa show a latitudinal gradient in richness, the relationship between latitude and species richness is often asymmetrical between the northern and southern hemispheres. Here we examine the latitudinal pattern of species richness across 1003 local ant assemblages. We find latitudinal asymmetry, with southern hemisphere sites being more diverse than northern hemisphere sites. Most of this asymmetry could be explained statistically by differences in contemporary climate. Local ant species richness was positively associated with temperature, but negatively (although weakly) associated with temperature range and precipitation. After contemporary climate was accounted for, a modest difference in diversity between hemispheres persisted, suggesting that factors other than contemporary climate contributed to the hemispherical asymmetry. The most parsimonious explanation for this remaining asymmetry is that greater climate change since the Eocene in the northern than in the southern hemisphere has led to more extinctions in the northern hemisphere with consequent effects on local ant species richness.


BioScience | 2010

Ecological Complexity and Pest Control in Organic Coffee Production: Uncovering an Autonomous Ecosystem Service

John Vandermeer; Ivette Perfecto; Stacy M. Philpott

Many traditional farmers and environmentalists subscribe to the popular idea that the natural world offers ecosystem services that contribute to the stability, productivity, and sustainability of agriculture. Opponents of this view argue that the farm is not an environment to be stewarded by romantic environmentalists, but rather is a battlefield on which the enemies of production must be vanquished. Contemporary research in ecosystem complexity offers a new platform on which to adjudicate between these two points of view. Through particular network structuring, nonlinearity, and stochasticity, and especially with the added dimension of space, recent theoretical and empirical research reveals that ecological systems persist and generate ecosystem services as a result of complex interacting components. Here we report on our research into the ecological dynamics of a collection of species related to key problems in pest control, a critical ecosystem service in coffee production.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants

Kailen A. Mooney; Daniel S. Gruner; Nicholas A. Barber; Sunshine A. Van Bael; Stacy M. Philpott; Russell Greenberg

Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores—which by virtue of their body size and feeding habits are often top predators in these systems—and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.


Nature | 2008

Clusters of ant colonies and robust criticality in a tropical agroecosystem

John Vandermeer; Ivette Perfecto; Stacy M. Philpott

Although sometimes difficult to measure at large scales, spatial pattern is important in natural biological spaces as a determinant of key ecological properties such as species diversity, stability, resiliency and others. Here we demonstrate, at a large spatial scale, that a common species of tropical arboreal ant forms clusters of nests through a combination of local satellite colony formation and density-dependent control by natural enemies, mainly a parasitic fly. Cluster sizes fall off as a power law consistent with a so-called robust critical state. This endogenous cluster formation at a critical state is a unique example of an insect population forming a non-random pattern at a large spatial scale. Furthermore, because the species is a keystone of a larger network that contributes to the ecosystem function of pest control, this is an example of how spatial dynamics at a large scale can affect ecosystem service at a local level.


Ecological Applications | 2009

Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems

Stacy M. Philpott; Oliver Soong; Jacob H. Lowenstein; Astrid Luz Pulido; Diego Tobar López; Dan F. B. Flynn; Fabrice DeClerck

In agroecosystems, biodiversity correlates with ecosystem function, yet mechanisms driving these relationships are often unknown. Examining traits and functional classifications of organisms providing ecosystem functions may provide insight into the mechanisms. Birds are important predators of insects, including pests. However, biological simplification of agroforests may decrease provisioning of this pest removal service by reducing bird taxonomic and functional diversity. A recent meta-analysis of bird exclosure studies from a range of agroecosystems in Central America concluded that higher bird richness is associated with significantly greater arthropod removal, yet the mechanism remains unclear. We conducted a meta-analysis of the same data to examine whether birds demonstrate functional complementarity in tropical agroforests. We classified birds according to relevant traits (body mass, foraging strategy, foraging Strata, and diet) and then examined how design of functional classification, including trait selection, classification methods, and the functional diversity metric used affect the suitability of different classifications as predictors of ecosystem services. We determined that vegetation characteristics are not likely drivers of arthropod removal by birds. For some functional classifications, functional richness positively correlated with arthropod removal, indicating that species complementarity may be an important mechanism behind this ecosystem function. The predictive ability of functional classifications increased with the number of traits included in the classification. For the two best classifications examined, functional group richness was a better predictor of arthropod reduction than other metrics of functional diversity (FD and Raos Q). However, no functional classification predicted arthropod removal better than simple species richness; thus other factors may be important. Our analysis indicates that the sampling effect may also play a role, as one species and two functional groups were responsible for disproportionate effects of arthropod removal.


Ecological Applications | 2005

NEST‐SITE LIMITATION IN COFFEE AGROECOSYSTEMS: ARTIFICIAL NESTS MAINTAIN DIVERSITY OF ARBOREAL ANTS

Stacy M. Philpott; Paul Foster

Nest sites are a limiting resource for arboreal twig-nesting ants, and nest sites may be increasingly limited with habitat modification. One such habitat modification is the conversion of traditional coffee farms, where coffee is cultivated under a dense, diverse shade canopy, to more intensive production systems with reduced canopy cover and lower diversity, height, and density of shade trees. As a result of such management intensification, ant diversity declines. We ask here if: (1) nest sites are a limiting resource for arboreal twig-nesting ants in coffee farms, especially in intensively managed systems and (2) nest-site limitation is a mechanism causing loss of ant diversity with coffee man- agement intensification. During 2000-2003, we investigated occupancy, species richness, and species composition of arboreal twig-nesting ants using natural (hollow coffee twig) and artificial (bamboo stem) nests in farms either with high or low diversity and density of shade trees. In both high- and low-shade sites ants occupied a majority ( .55%) of natural nests and occupied some (.15%) artificial nests, and significantly more artificial nests were occupied in low-shade sites. In both high- and low-shade sites, ant richness was higher in artificial than in natural nests. More species occupied natural nests in low-shade sites, and more species occupied artificial nests in high-shade sites. Furthermore, species composition differed between nest types, with more ant species found more often or only in artificial nests. These results indicate that, although ants are not strongly nest-site limited in coffee agroecosystems, nest limitation increases somewhat with increasing management intensi- fication. Reductions in numbers of nest sites may be a mechanism causing ant diversity loss with coffee management intensification. Interestingly, because relatively fewer species colonized artificial nests in the low-shade site, ants may be recruitment limited in the low-


Biodiversity and Conservation | 2007

Contribution of cocoa plantations to the conservation of native ants (Insecta: Hymenoptera: Formicidae) with a special emphasis on the Atlantic Forest fauna of southern Bahia, Brazil

Jacques H. C. Delabie; Benoit Jahyny; Ivan Cardoso do Nascimento; Cléa dos Santos Ferreira Mariano; Sébastien Lacau; Sofia Campiolo; Stacy M. Philpott; Maurice Leponce

By maintaining a forest-like structure, shaded cocoa plantations contribute to the conservation of ants that usually live in the soil, leaf litter or canopy of tropical forests. Here we synthesize the available information on the diversity and community structure of ants in shaded cocoa plantations in the Atlantic forest region of Brazil, compare ant assemblages in cocoa agroforests with forests and other forms of agriculture, and discuss how these shaded plantations contribute to the conservation of the ants in the Atlantic Forest region. We also discuss ants of economical importance and of special interest, including Camponotus, Dolichoderus, Gnamptogenys, Pachycondyla, Pseudomyrmex and other litter dwelling genera. We discuss the situation of the tramp ant Wasmannia auropunctata in the Bahian cocoa-producing region where it is considered as native, and that of the two cryptobiotic genera Thaumatomyrmex and Typhlomyrmex, as well as that of proven and possible endangered army ant and Ponerini species. A total of 192 ant species from four strata were found in extensive sampling of a cocoa plantation with a relatively simple shade canopy (comprised primarily of Erythrina). Species richness in the cocoa plantations corresponded roughly to that of low diversity native forests, and species composition of cocoa plantations was most similar to native habitats (forest and mangroves) while ant composition in other agricultural habitats was most similar to that of urban areas. Although occurrences of Wasmannia auropunctata were similar in cocoa plantations and forests, abundance of Thaumatomyrmex and Typhlomyrmex, generally thought to be rare ants, was relatively high in cocoa plantations. These results, from cocoa plantations with relatively simple shade, demonstrate the importance of cocoa for ant conservation in the Atlantic forest region of Brazil. It is likely that cocoa plantations with a greater number of vegetation strata and higher tree species richness (such as traditional cabruca plantations) provide even more important habitat for ants generally and for ant species of conservation concern.

Collaboration


Dive into the Stacy M. Philpott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bichier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalene Jha

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan N. Andersen

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge