Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J. Gonthier is active.

Publication


Featured researches published by David J. Gonthier.


Proceedings of the Royal Society of London B: Biological Sciences | 2014

Biodiversity conservation in agriculture requires a multi-scale approach

David J. Gonthier; Katherine K. Ennis; Serge Farinas; Hsun Yi Hsieh; Aaron L. Iverson; Péter Batáry; Jörgen Rudolphi; Teja Tscharntke; Bradley J. Cardinale; Ivette Perfecto

Biodiversity loss—one of the most prominent forms of modern environmental change—has been heavily driven by terrestrial habitat loss and, in particular, the spread and intensification of agriculture. Expanding agricultural land-use has led to the search for strong conservation strategies, with some suggesting that biodiversity conservation in agriculture is best maximized by reducing local management intensity, such as fertilizer and pesticide application. Others highlight the importance of landscape-level approaches that incorporate natural or semi-natural areas in landscapes surrounding farms. Here, we show that both of these practices are valuable to the conservation of biodiversity, and that either local or landscape factors can be most crucial to conservation planning depending on which types of organisms one wishes to save. We performed a quantitative review of 266 observations taken from 31 studies that compared the impacts of localized (within farm) management strategies and landscape complexity (around farms) on the richness and abundance of plant, invertebrate and vertebrate species in agro-ecosystems. While both factors significantly impacted species richness, the richness of sessile plants increased with less-intensive local management, but did not significantly respond to landscape complexity. By contrast, the richness of mobile vertebrates increased with landscape complexity, but did not significantly increase with less-intensive local management. Invertebrate richness and abundance responded to both factors. Our analyses point to clear differences in how various groups of organisms respond to differing scales of management, and suggest that preservation of multiple taxonomic groups will require multiple scales of conservation.


Biological Reviews | 2016

Bird and bat predation services in tropical forests and agroforestry landscapes

Bea Maas; Daniel S. Karp; Sara Bumrungsri; Kevin Darras; David J. Gonthier; Joe C.-C. Huang; Catherine A. Lindell; Josiah J. Maine; Laia Mestre; Nicole L. Michel; Emily B. Morrison; Ivette Perfecto; Stacy M. Philpott; Çagan H. Şekercioğlu; Roberta M. Silva; Peter J. Taylor; Teja Tscharntke; Sunshine A. Van Bael; Christopher J. Whelan; Kimberly Williams-Guillén

Understanding distribution patterns and multitrophic interactions is critical for managing bat‐ and bird‐mediated ecosystem services such as the suppression of pest and non‐pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed ‘forest‐agri’ habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed.


Ecology | 2012

Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity

Stacy M. Philpott; Gabriella L. Pardee; David J. Gonthier

Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.


PLOS ONE | 2012

Do Herbivores Eavesdrop on Ant Chemical Communication to Avoid Predation

David J. Gonthier

Strong effects of predator chemical cues on prey are common in aquatic and marine ecosystems, but are thought to be rare in terrestrial systems and specifically for arthropods. For ants, herbivores are hypothesized to eavesdrop on ant chemical communication and thereby avoid predation or confrontation. Here I tested the effect of ant chemical cues on herbivore choice and herbivory. Using Margaridisa sp. flea beetles and leaves from the host tree (Conostegia xalapensis), I performed paired-leaf choice feeding experiments. Coating leaves with crushed ant liquids (Azteca instabilis), exposing leaves to ant patrolling prior to choice tests (A. instabilis and Camponotus textor) and comparing leaves from trees with and without A. instabilis nests resulted in more herbivores and herbivory on control (no ant-treatment) relative to ant-treatment leaves. In contrast to A. instabilis and C. textor, leaves previously patrolled by Solenopsis geminata had no difference in beetle number and damage compared to control leaves. Altering the time A. instabilis patrolled treatment leaves prior to choice tests (0-, 5-, 30-, 90-, 180-min.) revealed treatment effects were only statistically significant after 90- and 180-min. of prior leaf exposure. This study suggests, for two ecologically important and taxonomically diverse genera (Azteca and Camponotus), ant chemical cues have important effects on herbivores and that these effects may be widespread across the ant family. It suggests that the effect of chemical cues on herbivores may only appear after substantial previous ant activity has occurred on plant tissues. Furthermore, it supports the hypothesis that herbivores use ant chemical communication to avoid predation or confrontation with ants.


PeerJ | 2014

Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity.

Zachary Hajian-Forooshani; David J. Gonthier; Linda Marín; Aaron L. Iverson; Ivette Perfecto

Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee.


Tropical Conservation Science | 2013

Large- and medium-sized mammal survey using camera traps in the Sikre River in the Río Plátano Biosphere Reserve, Honduras

David J. Gonthier; Franklin E. Castañeda

Large mammals are elusive, often nocturnal, and therefore difficult to study. In many parks, reserves, agriculture lands, and other human-dominated landscapes, mammalian abundance is unknown despite their importance to ecosystems. The Río Plátano Biosphere Reserve of eastern Honduras has been the site of much research, but many rivers within the reserve have not been surveyed for mammalian diversity. In this study we used camera traps to survey an area of 70 km2 along the Sikre River for mammals in both broad-leaf forest and pine savanna. 2,040 trap-nights yielded 116 captures in total. Fourteen mammal, three bird, and one reptile species were photographed in the broad-leaf forest, while none of the four camera stations in the pine savanna captured animals on film. The tapir (Tapirus bairdii) was the most frequently captured species. We also captured four photographs of at least two individuals of the giant anteater (Myrmecophaga tridactyla), a species considered the most threatened mammal in Central America. Of the felids, Puma concolor and Leopardus pardalis were each captured on five photographs each, while Panthera onca was only captured once during a preliminary pilot survey in 2007. The results suggest the study site hosts a species richness of large- and medium-sized mammals that is comparable to other sites in Central and South America.


Environmental Entomology | 2013

Food webs in the litter: effects of food and nest addition on ant communities in coffee agroecosystems and forest.

Cody J. Murnen; David J. Gonthier; Stacy M. Philpott

ABSTRACT Community assembly is driven by multiple factors, including resource availability and habitat requirements. Litter nesting ants respond to food and nest site availability, and adding food and nests may increase ant species richness and abundance. However, litter decomposers share food resources with ants, and increasing food availability may speed decomposition processes, eliminating twigs and seeds in which litter ants nest. We manipulated ant food and nest resources in three habitat types (forest, high-shade coffee, and low-shade coffee) to determine ant community responses after 1 and 2 mo. We examined changes in numbers of ant species, colonies, workers, brood, colony growth rate, and ant species composition. Habitat type strongly affected ant communities, influencing ant species richness, numbers of colonies and workers, and ant species composition. However, food addition and nest addition did not affect these community characteristics. Colony growth rate did not differ with food addition but was greater in forest and low-shade coffee compared with high-shade coffee. Habitat differences in colony growth may be because of presence of an aggressive species (Wasmannia auropunctata Roger) in high-shade coffee plots or naturally low arthropod densities during a time when ant colonization was low. Thus, in coffee landscapes, habitat type impacts litter nesting ant community structure, composition, and colony growth rate; however, food and nest addition had small impacts.


Chemoecology | 2011

Effect of nitrogen fertilization on caffeine production in coffee (Coffea arabica)

David J. Gonthier; Jason D. Witter; Alison L. Spongberg; Stacy M. Philpott

Nitrogen (N) based secondary metabolite production is thought to be costly to plants because N is required for growth, as well as, the synthesis of these compounds. Therefore, variation in N availability may result in variation in N-based secondary metabolite production. Here, we determine the effect of N fertilization on caffeine (N-based alkaloid) production in coffee (Coffea arabica) seedlings. A growth chamber experiment was performed with three N treatments applied to seedlings. N fertilization increased plant growth, leaf biomass, and plant N. Caffeine concentration in phloem exudates was greater in high-N fertilized plants relative to intermediate- and low-N plants. However, leaf, stem, root, and total overall caffeine concentration and content did not differ across N treatments. These results suggest caffeine in coffee is strongly regulated by genetic factors, and environment is likely less important to caffeine phenotype. This is among the first studies to investigate the effect of N fertilization on caffeine within the phloem, which has important implications for herbivores that are sensitive to caffeine and plant N and feed from the phloem of coffee.


Ecosphere | 2013

Bottom‐up effects of soil quality on a coffee arthropod interaction web

David J. Gonthier; G. M. Dominguez; Jason D. Witter; Alison L. Spongberg; Stacy M. Philpott

Nutrient availability and soil quality influence herbivores through changes in plant traits and can have cascading effects on herbivore interactions. In complex systems, with many positive and negative interactions, the consequences of these bottom-up effects are still not well established. We carried out a set of studies to determine the impact of soil quality (organic compost amendments) on a hemipteran herbivore (Coccus viridis), two ant mutualists, predators, pathogens, parasitoids of C. viridis, and an arboreal arthropod community on coffee (Coffea arabica). We also determined the impact of Azteca instabilis ants on the arthropod community with an exclusion experiment. In an observational study, the carbon to nitrogen ratio (C:N) of leaf tissue correlated negatively with C. viridis density, however caffeine content did not correlate with C. viridis. In a field experiment with coffee seedlings, both C. viridis and total arthropod abundance were greater on high-quality plants than on low-quality plants. Excluding A. instabilis resulted in higher C. viridis abundance and parasitism rate, and higher spider and total arthropod abundance. Although A. instabilis attendance of C. viridis only marginally differed across soil quality treatments, in a second experiment, Pheidole synanthropica ants recruited more workers per C. viridis individual on highrelative to low-quality plants. Soil quality treatments did not impact predator abundance or fungal pathogen prevalence. These results suggest soil quality impacts C. viridis herbivores, P. synanthropica ants, and total abundance of arthropods on coffee, but did not impact the third trophic level. Thus this study provides a complex case study of pathways in which bottom-up effects influence arthropod interaction webs.


Journal of Tropical Ecology | 2010

Azteca instabilis ants and the defence of a coffee shade tree: an ant-plant association without mutual rewards in Chiapas, Mexico

David J. Gonthier; Gabriella L. Pardee; Stacy M. Philpott

Ants (Hymenoptera: Formicidae) are important predators of herbivorous insects on plants (Rosumek et al . 2009). Ant removal or absence may result in negative indirect effects on plants, as herbivore abundance and herbivory increase and plant growth and reproduction decline (Rosumek et al . 2009, Schmitz et al . 2000). Ant presence on plants often results from a mutualistic interaction. For example, strong highly coevolved ant–plant mutualisms are found on myrmecophytic plants that house ants in domatia (specialized nesting sites). Weaker mutualistic associations are found with myrmecophilic plants that only offer extra-floral nectaries (EFNs) or food bodies to attract ants, or on other plants hosting honeydew-producing hemipterans (indirect ant–plant interactions) that mediate ant abundance (Holldobler & Wilson 1990). However, in most cases, plants and arboreal ants form more passive associations, where ants nest in the natural cavities of branches or bark, or construct carton nests on plant substrates (Holldobler & Wilson 1990) and the only reward plants offer these ants is the use of their substrates. In these situations the indirect effect of ants on plants is merely by chance, a byproduct of ant presence (byproduct association).

Collaboration


Dive into the David J. Gonthier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge