Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stanley A. Langevin is active.

Publication


Featured researches published by Stanley A. Langevin.


Nature Genetics | 2007

A single positively selected West Nile viral mutation confers increased virogenesis in American crows

Aaron C. Brault; Claire Y.-H. Huang; Stanley A. Langevin; Richard M. Kinney; Richard A. Bowen; Wanichaya N. Ramey; Nicholas A. Panella; Edward C. Holmes; Ann M. Powers; Barry R. Miller

West Nile virus (WNV), first recognized in North America in 1999, has been responsible for the largest arboviral epiornitic and epidemic of human encephalitis in recorded history. Despite the well-described epidemiological patterns of WNV in North America, the basis for the emergence of WNV-associated avian pathology, particularly in the American crow (AMCR) sentinel species, and the large scale of the North American epidemic and epiornitic is uncertain. We report here that the introduction of a T249P amino acid substitution in the NS3 helicase (found in North American WNV) in a low-virulence strain was sufficient to generate a phenotype highly virulent to AMCRs. Furthermore, comparative sequence analyses of full-length WNV genomes demonstrated that the same site (NS3-249) was subject to adaptive evolution. These phenotypic and evolutionary results provide compelling evidence for the positive selection of a mutation encoding increased viremia potential and virulence in the AMCR sentinel bird species.


Emerging Infectious Diseases | 2004

Differential Virulence of West Nile Strains for American Crows

Aaron C. Brault; Stanley A. Langevin; Richard A. Bowen; Nicholas A. Panella; Brad J. Biggerstaff; Barry R. Miller; Nicholas Komar

Increased viremia and deaths in American Crows inoculated with a North American West Nile viral genotype indicate that viral genetic determinants enhance avian pathogenicity and increase transmission potential of WNV.


Journal of Clinical Microbiology | 2003

Epitope-Blocking Enzyme-Linked Immunosorbent Assays for the Detection of Serum Antibodies to West Nile Virus in Multiple Avian Species

Bradley J. Blitvich; Nicole L. Marlenee; Roy A. Hall; Charles H. Calisher; Richard A. Bowen; John T. Roehrig; Nicholas Komar; Stanley A. Langevin; Barry J. Beaty

ABSTRACT We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WNV or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.1112G potentially discriminated between WNV and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2B2 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.67G, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species.


Emerging Infectious Diseases | 2002

Detection of West Nile Virus in Oral and Cloacal Swabs Collected from Bird Carcasses

Nicholas Komar; Robert S. Lanciotti; Richard A. Bowen; Stanley A. Langevin; Michel L. Bunning

We evaluated if postmortem cloacal and oral swabs could replace brain tissue as a specimen for West Nile virus (WNV) detection. WNV was detected in all three specimen types from 20 dead crows and jays with an average of >105 WNV PFU in each. These findings suggest that testing cloacal or oral swabs might be a low-resource approach to detect WNV in dead birds.


Vector-borne and Zoonotic Diseases | 2003

Serologic Survey of Domestic Animals for Zoonotic Arbovirus Infections in the Lacandón Forest Region of Chiapas, Mexico

Armando Ulloa; Stanley A. Langevin; J.D. Mendez-Sanchez; Juan I. Arredondo-Jiménez; Janae L. Raetz; Ann M. Powers; C. Villarreal-Treviño; Duane J. Gubler; Nicholas Komar

A serologic survey in domestic animals (birds and mammals) was conducted in four communities located in the Lacandón Forest region of northeastern Chiapas, Mexico, during June 29 to July 1, 2001, with the objective to identify zoonotic arboviruses circulating in this area. We collected 202 serum samples from healthy domestic chickens, geese, ducks, turkeys, horses and cattle. The samples were tested by plaque-reduction neutralization test for antibodies to selected mosquito-borne flaviviruses (family Flaviviridae), including St. Louis encephalitis (SLE), Rocio (ROC), Ilheus (ILH), Bussuquara (BSQ), and West Nile (WN) viruses, and selected alphaviruses (family Togaviridae), including Western equine encephalitis (WEE), Eastern equine encephalomyelitis (EEE), and Venezuelan equine encephalitis (VEE) viruses. Neutralizing antibodies to SLE virus were detected in two (8%) of 26 turkeys, 15 (23%) of 66 cattle, and three (60%) of five horses. Antibodies to VEE virus were detected in 29 (45%) of 65 cattle. Because some of these animals were as young as 2 months old, we demonstrated recent activity of these two viruses. Sub-typing of the VEE antibody responses indicated that the etiologic agents of these infections belonged to the IE variety of VEE, which has been reported from other regions of Chiapas. WN virus-neutralizing antibodies were detected in a single cattle specimen (PRNT(90) = 1:80) that also circulated SLE virus-neutralizing antibodies (PRNT(90) = 1:20), suggesting that WN virus may have been introduced into the region. We also detected weak neutralizing activity to BSQ virus in four cattle and a chicken specimen, suggesting the presence of this or a closely related virus in Mexico. There was no evidence for transmission of the other viruses (ROC, ILH, EEE, WEE) in the study area.


Journal of Clinical Microbiology | 2003

Detection of Anti-West Nile Virus Immunoglobulin M in Chicken Serum by an Enzyme-Linked Immunosorbent Assay

Alison J. Johnson; Stanley A. Langevin; Katherine L. Wolff; Nicholas Komar

ABSTRACT The emergence of West Nile (WN) virus in New York and the surrounding area in 1999 prompted an increase in surveillance measures throughout the United States, including the screening of sentinel chicken flocks for antibodies. An enzyme-linked immunosorbent assay (ELISA) for the detection of chicken immunoglobulin M (IgM) to WN virus was developed, standardized, and characterized as a rapid and sensitive means to detect WN viral antibodies in sentinel flocks. Serum specimens from experimentally infected chickens were analyzed by using this assay, and IgM was detected as early as 3 to 7 days postinfection. Persistence of IgM varied from at least 19 to more than 61 days postinfection, which indicates the need to bleed sentinel flocks at least every 2 weeks for optimal results if this method is to be used as a screening tool. The ELISA was compared to hemagglutination-inhibition and plaque reduction neutralization tests and was found to be the method of choice when early detection of WN antibody is required. House sparrows and rock doves are potential free-ranging sentinel species for WN virus, and the chicken WN IgM-capture ELISA was capable of detecting anti-WN IgM in house sparrow serum samples from laboratory-infected birds but not from rock dove serum samples. The chicken WN IgM-capture ELISA detected anti-WN antibodies in serum samples from naturally infected chickens. It also detected IgM in serum samples from two species of geese and from experimentally infected ring-necked pheasants, American crows, common grackles, and redwinged blackbirds. However, the test was determined to be less appropriate than an IgG (IgY)-based assay for use with free-ranging birds. The positive-to-negative ratios in the ELISA were similar regardless of the strain of WN viral antigen used, and only minimal cross-reactivity was observed between the WN and St. Louis encephalitis (SLE) IgM-capture ELISAs. A blind-coded serum panel was tested, and the chicken WN IgM-capture ELISA produced consistent results, with the exception of one borderline result. A preliminary test was done to assess the feasibility of a combined SLE and WN IgM-capture ELISA, and results were promising.


Avian Diseases | 2007

DNA Vaccination of the American Crow (Corvus brachyrhynchos) Provides Partial Protection Against Lethal Challenge with West Nile Virus

Michel L. Bunning; Patricia E. Fox; Richard A. Bowen; Nicholas Komar; Gwong-Jen J. Chang; Tully Speaker; Michael R. Stephens; Nicole M. Nemeth; Nicholas A. Panella; Stanley A. Langevin; Paul Gordy; Max Teehee; Patricia R. Bright; Michael J. Turell

Abstract The New York 1999 strain of West Nile virus (WNV) is nearly 100% fatal in the American crow (Corvus brachyrhynchos). We evaluated four WNV vaccine formulations in American crows, including intramuscular (i.m.) DNA vaccine, i.m. DNA vaccine with adjuvant, orally administered microencapsulated DNA vaccine, and i.m. killed vaccine. Neutralizing antibodies developed in approximately 80% of crows that received the DNA vaccine i.m. (with or without adjuvant), and in 44% that received the killed vaccine. However, no crows that received the oral microencapsulated DNA vaccine or the placebo developed WNV antibodies. All crows were challenged 10 wk after initial vaccination. No unvaccinated crows survived challenge, and survival rates were 44% (i.m. DNA vaccine), 60% (i.m. DNA vaccine with adjuvant), 0% (oral microencapsulated DNA vaccine), and 11% (killed vaccine). Peak viremia titers in the birds that survived were significantly lower as compared to titers in birds that died. Parenteral administration of a WNV DNA vaccine was associated with reduced mortality but did not provide sterile immunity.


American Journal of Tropical Medicine and Hygiene | 2012

Detection of Persistent West Nile Virus RNA in Experimentally and Naturally Infected Avian Hosts

Sarah S. Wheeler; Stanley A. Langevin; Aaron C. Brault; Leslie W. Woods; Brian D. Carroll; William K. Reisen

To determine whether West Nile virus (WNV) persistent infection in avian hosts may potentially serve as an overwintering mechanism, House Sparrows and House Finches, experimentally and naturally infected with several strains of WNV, and two naturally infected Western Scrub-Jays were held in mosquito-proof outdoor aviaries from 2007-March 2008. Overall, 94% (n = 36) of House Sparrows, 100% (n = 14) of House Finches and 2 Western Scrub-Jays remained WNV antibody positive. When combined by species, 37% of the House Sparrows, 50% of the House Finches, and 2 Western Scrub-Jays were WNV RNA positive at necropsy, up to 36 weeks post-infection. Infectious WNV was not detected. Our study supports the hypothesis that some avian hosts support the long-term persistence of WNV RNA, but it remains unresolved whether these infections relapse to restart an avian-arthropod transmission cycle and thereby serve as an overwintering mechanism for WNV.


American Journal of Tropical Medicine and Hygiene | 2011

Reduced Avian Virulence and Viremia of West Nile Virus Isolates from Mexico and Texas

Aaron C. Brault; Stanley A. Langevin; Wanichaya N. Ramey; Ying Fang; David W. C. Beasley; Christopher M. Barker; Todd A. Sanders; William K. Reisen; Alan D. T. Barrett; Richard A. Bowen

A West Nile virus (WNV) isolate from Mexico (TM171-03) and BIRD1153, a unique genotype from Texas, have exhibited reduced murine neuroinvasive phenotypes. To determine if murine neuroinvasive capacity equates to avian virulence potential, American crow (Corvus brachyrhynchos) and house sparrows (Passer domesticus) were experimentally inoculated with representative murine neuroinvasive/non-neuroinvasive strains. In both avian species, a plaque variant from Mexico that was E-glycosylation competent produced higher viremias than an E-glycosylation-incompetent variant, indicating the potential importance of E-glycosylation for avian replication. The murine non-neuroinvasive BIRD1153 strain was significantly attenuated in American crows but not house sparrows when compared with the murine neuroinvasive Texas strain. Despite the loss of murine neuroinvasive properties of nonglycosylated variants from Mexico, our data indicate avian replication potential of these strains and that unique WNV virulence characteristics exist between murine and avian models. The implications of reduced avian replication of variants from Mexico for restricted WNV transmission in Latin America is discussed.


Vector-borne and Zoonotic Diseases | 2011

Efficacy of Three Vaccines in Protecting Western Scrub-Jays (Aphelocoma californica) from Experimental Infection with West Nile Virus: Implications for Vaccination of Island Scrub-Jays (Aphelocoma insularis)

Sarah S. Wheeler; Stanley A. Langevin; Leslie W. Woods; Brian D. Carroll; Winston Vickers; Scott A. Morrison; Gwong Jen J Chang; William K. Reisen; Walter M. Boyce

The devastating effect of West Nile virus (WNV) on the avifauna of North America has led zoo managers and conservationists to attempt to protect vulnerable species through vaccination. The Island Scrub-Jay (Aphelocoma insularis) is one such species, being a corvid with a highly restricted insular range. Herein, we used congeneric Western Scrub-Jays (Aphelocoma californica) to test the efficacy of three WNV vaccines in protecting jays from an experimental challenge with WNV: (1) the Fort Dodge West Nile-Innovator(®) DNA equine vaccine, (2) an experimental DNA plasmid vaccine, pCBWN, and (3) the Merial Recombitek(®) equine vaccine. Vaccine efficacy after challenge was compared with naïve and nonvaccinated positive controls and a group of naturally immune jays. Overall, vaccination lowered peak viremia compared with nonvaccinated positive controls, but some WNV-related pathology persisted and the viremia was sufficient to possibly infect susceptible vector mosquitoes. The Fort Dodge West Nile-Innovator DNA equine vaccine and the pCBWN vaccine provided humoral immune priming and limited side effects. Five of the six birds vaccinated with the Merial Recombitek vaccine, including a vaccinated, non-WNV challenged control, developed extensive necrotic lesions in the pectoral muscle at the vaccine inoculation sites, which were attributed to the Merial vaccine. In light of the well-documented devastating effects of high morbidity and mortality associated with WNV infection in corvids, vaccination of Island Scrub-Jays with either the Fort Dodge West Nile-Innovator DNA vaccine or the pCBWN vaccine may increase the numbers of birds that would survive an epizootic should WNV become established on Santa Cruz Island.

Collaboration


Dive into the Stanley A. Langevin's collaboration.

Top Co-Authors

Avatar

Aaron C. Brault

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Nicholas Komar

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas A. Panella

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Anishchenko

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Todd A. Sanders

United States Fish and Wildlife Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge