Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theodore C. Pierson is active.

Publication


Featured researches published by Theodore C. Pierson.


Nature Medicine | 1999

Latent infection of CD4 + T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy

Diana Finzi; Joel N. Blankson; Janet D. Siliciano; Joseph B. Margolick; Karen Chadwick; Theodore C. Pierson; Kendall A. Smith; Julianna Lisziewicz; Franco Lori; Charles Flexner; Thomas C. Quinn; Richard E. Chaisson; Eric S. Rosenberg; Bruce D. Walker; Stephen J. Gange; Joel E. Gallant; Robert F. Siliciano

Combination therapy for HIV-1 infection can reduce plasma virus to undetectable levels, indicating that prolonged treatment might eradicate the infection. However, HIV-1 can persist in a latent form in resting CD4+ T cells. We measured the decay rate of this latent reservoir in 34 treated adults whose plasma virus levels were undetectable. The mean half-life of the latent reservoir was very long (43.9 months). If the latent reservoir consists of only 1 × 105 cells, eradication could take as long as 60 years. Thus, latent infection of resting CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective anti-retroviral therapy.


Nature | 2010

2′- O methylation of the viral mRNA cap evades host restriction by IFIT family members

Stephane Daffis; Kristy J. Szretter; Jill Schriewer; Jianqing Li; Soonjeon Youn; John S. Errett; Tsai-Yu Lin; Stewart W. Schneller; Roland Züst; Hongping Dong; Volker Thiel; Ganes C. Sen; Volker Fensterl; William B. Klimstra; Theodore C. Pierson; R. Mark L. Buller; Michael Gale; Pei Yong Shi; Michael S. Diamond

Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2′-O positions of the 5′ guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2′-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2′-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2′-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2′-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2′-O methylation of the 5′ cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2′-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.


Science | 2016

The 3.8 Å resolution cryo-EM structure of Zika virus

Devika Sirohi; Zhenguo Chen; Lei Sun; Thomas Klose; Theodore C. Pierson; Michael G. Rossmann; Richard J. Kuhn

Unveiling the Zika virus The ongoing Zika virus epidemic is of grave concern because of its apparent links to congenital microcephaly and Guillain-Barré syndrome. Sirohi et al. present a near-atomic-resolution structure of mature Zika virus determined by cryo-electron microscopy. The structure is mainly similar to that of other flaviviruses such as dengue virus; however, there are differences in a region that may be involved in binding to host receptors. The structure provides a foundation for analysis of the antigenicity and pathogenesis of Zika virus. Science, this issue p. 467 The structure of mature Zika virus is similar to other flaviviruses, except in the region of a potential cell attachment site. The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo–electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn154 glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.


Journal of Virology | 2004

Resting CD4+ T Cells from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Individuals Carry Integrated HIV-1 Genomes within Actively Transcribed Host Genes

Yefei Han; Kara G. Lassen; Daphne Monie; Ahmad R. Sedaghat; Shino Shimoji; Xiao Liu; Theodore C. Pierson; Joseph B. Margolick; Robert F. Siliciano; Janet D. Siliciano

ABSTRACT Resting CD4+ T-cell populations from human immunodeficiency virus type 1 (HIV-1)-infected individuals include cells with integrated HIV-1 DNA. In individuals showing suppression of viremia during highly active antiretroviral therapy (HAART), resting CD4+ T-cell populations do not produce virus without cellular activation. To determine whether the nonproductive nature of the infection in resting CD4+ T cells is due to retroviral integration into chromosomal regions that are repressive for transcription, we used inverse PCR to characterize the HIV-1 integration sites in vivo in resting CD4+ T cells from patients on HAART. Of 74 integration sites from 16 patients, 93% resided within transcription units, usually within introns. Integration was random with respect to transcriptional orientation relative to the host gene and with respect to position within the host gene. Of integration sites within well-characterized genes, 91% (51 of 56) were in genes that were actively expressed in resting CD4+ T cells, as directly demonstrated by reverse transcriptase PCR (RT-PCR). These results predict that HIV-1 sequences may be included in the primary transcripts of host genes as part of rapidly degraded introns. RT-PCR experiments confirmed the presence of HIV-1 sequences within transcripts initiating upstream of the HIV-1 transcription start site. Taken together, these results demonstrate that HIV-1 genomes reside within actively transcribed host genes in resting CD4+ T cells in vivo.


Journal of Virology | 2006

West Nile Virus Discriminates between DC-SIGN and DC-SIGNR for Cellular Attachment and Infection

Carl W. Davis; Hai-Yen Nguyen; Sheri L. Hanna; Melissa D. Sánchez; Robert W. Doms; Theodore C. Pierson

ABSTRACT The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.


Journal of Virology | 2006

Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein

Theodore Oliphant; Grant E. Nybakken; Michael Engle; Qing Xu; Christopher A. Nelson; Soila Sukupolvi-Petty; Anantha Marri; Bat-El Lachmi; Udy Olshevsky; Daved H. Fremont; Theodore C. Pierson; Michael S. Diamond

ABSTRACT Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc γ receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.


Journal of Virology | 2002

Molecular Characterization of Preintegration Latency in Human Immunodeficiency Virus Type 1 Infection

Theodore C. Pierson; Yan Zhou; Tara L. Kieffer; Christian T. Ruff; Christopher B. Buck; Robert F. Siliciano

ABSTRACT Most current evidence suggests that the infection of resting CD4+ T cells by human immunodeficiency virus type 1 (HIV-1) is not productive due to partial or complete blocks in the viral life cycle at steps prior to integration of the viral genome into the host cell chromosome. However, stimulation of an infected resting T cell by antigen, cytokines, or microenvironmental factors can overcome these blocks and allow for the production of progeny virions. In this study, we sought to understand the structure and fate of the virus in unstimulated resting CD4+ T cells. Using a novel linker-mediated PCR assay designed to detect and characterize linear unintegrated forms of the HIV-1 genome, we demonstrate that reverse transcription can proceed to completion following the infection of resting T cells, generating the substrate for the retroviral integration reaction. However, reverse transcription in resting T cells is far slower than in activated T cells, requiring 2 to 3 days to complete. The delay in completing reverse transcription may make the viral DNA genome more susceptible to competing decay processes. To explore the relationship between the formation of the linear viral genome and the stability of the preintegration state, we employed a recombinant HIV-1 virus expressing the enhanced green fluorescent protein to measure the rate at which HIV-1 decays in the preintegration state. Our results demonstrate that the preintegration state is labile and decays rapidly (half-life = 1 day) following the entry of HIV-1 into a resting T cell, with significant decay occurring during the slow process of reverse transcription.


Journal of Virology | 2005

Castanospermine, a Potent Inhibitor of Dengue Virus Infection In Vitro and In Vivo

Kevin Whitby; Theodore C. Pierson; Brian J. Geiss; Kelly Lane; Michael Engle; Yi Zhou; Robert W. Doms; Michael S. Diamond

ABSTRACT Previous studies have suggested that α-glucosidase inhibitors such as castanospermine and deoxynojirimycin inhibit dengue virus type 1 infection by disrupting the folding of the structural proteins prM and E, a step crucial to viral secretion. We extend these studies by evaluating the inhibitory activity of castanospermine against a panel of clinically important flaviviruses including all four serotypes of dengue virus, yellow fever virus, and West Nile virus. Using in vitro assays we demonstrated that infections by all serotypes of dengue virus were inhibited by castanospermine. In contrast, yellow fever virus and West Nile virus were partially and almost completely resistant to the effects of the drug, respectively. Castanospermine inhibited dengue virus infection at the level of secretion and infectivity of viral particles. Importantly, castanospermine prevented mortality in a mouse model of dengue virus infection, with doses of 10, 50, and 250 mg/kg of body weight per day being highly effective at promoting survival (P ≤ 0.0001). Correspondingly, castanospermine had no adverse or protective effect on West Nile virus mortality in an analogous mouse model. Overall, our data suggest that castanospermine has a strong antiviral effect on dengue virus infection and warrants further development as a possible treatment in humans.


Journal of Virology | 2010

Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2

Soila Sukupolvi-Petty; S. Kyle Austin; Michael Engle; James D. Brien; Kimberly A. Dowd; Katherine L. Williams; Syd Johnson; Rebeca Rico-Hesse; Eva Harris; Theodore C. Pierson; Daved H. Fremont; Michael S. Diamond

ABSTRACT Dengue virus (DENV) is the most prevalent insect-transmitted viral disease in humans globally, and currently no specific therapy or vaccine is available. Protection against DENV and other related flaviviruses is associated with the development of antibodies against the viral envelope (E) protein. Although prior studies have characterized the neutralizing activity of monoclonal antibodies (MAbs) against DENV type 2 (DENV-2), none have compared simultaneously the inhibitory activity against a genetically diverse range of strains in vitro, the protective capacity in animals, and the localization of epitopes. Here, with the goal of identifying MAbs that can serve as postexposure therapy, we investigated in detail the functional activity of a large panel of new anti-DENV-2 mouse MAbs. Binding sites were mapped by yeast surface display and neutralization escape, cell culture inhibition assays were performed with homologous and heterologous strains, and prophylactic and therapeutic activity was evaluated with two mouse models. Protective MAbs localized to epitopes on the lateral ridge of domain I (DI), the dimer interface, lateral ridge, and fusion loop of DII, and the lateral ridge, C-C′ loop, and A strand of DIII. Several MAbs inefficiently inhibited at least one DENV-2 strain of a distinct genotype, suggesting that recognition of neutralizing epitopes varies with strain diversity. Moreover, antibody potency generally correlated with a narrowed genotype and serotype specificity. Five MAbs functioned efficiently as postexposure therapy when administered as a single dose, even 3 days after intracranial infection of BALB/c mice. Overall, these studies define the structural and functional complexity of antibodies against DENV-2 with protective potential.


Journal of Virology | 2005

N-Linked Glycosylation of West Nile Virus Envelope Proteins Influences Particle Assembly and Infectivity

Sheri L. Hanna; Theodore C. Pierson; Melissa D. Sánchez; Asim A. Ahmed; Mariam M. Murtadha; Robert W. Doms

ABSTRACT West Nile virus (WNV) encodes two envelope proteins, premembrane (prM) and envelope (E). While the prM protein of all WNV strains contains a single N-linked glycosylation site, not all strains contain an N-linked site in the E protein. The presence of N-linked glycosylation on flavivirus E proteins has been linked to virus production, pH sensitivity, and neuroinvasiveness. Therefore, we examined the impact of prM and E glycosylation on WNV assembly and infectivity. Similar to other flaviviruses, expression of WNV prM and E resulted in the release of subviral particles (SVPs). Removing the prM glycosylation site in a lineage I or II strain decreased SVP release, as did removal of the glycosylation site in a lineage I E protein. Addition of the E protein glycosylation site in a lineage II strain that lacked this site increased SVP production. Similar results were obtained in the context of either reporter virus particles (RVPs) or infectious lineage II WNV. RVPs or virions bearing combinations of glycosylated and nonglycosylated forms of prM and E could infect mammalian, avian, and mosquito cells (BHK-21, QT6, and C6/36, respectively). Those particles lacking glycosylation on the E protein were modestly more infectious per genome copy on BHK-21 and QT6 cells, while this absence greatly enhanced the infection of C6/36 cells. Thus, glycosylation of WNV prM and E proteins can affect the efficiency of virus release and infection in a manner that is cell type and perhaps species dependent. This suggests a multifaceted role for envelope N-linked glycosylation in WNV biology and tropism.

Collaboration


Dive into the Theodore C. Pierson's collaboration.

Top Co-Authors

Avatar

Michael S. Diamond

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Dowd

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert W. Doms

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert F. Siliciano

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Swati Mukherjee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina R. DeMaso

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge