Stephan Meller
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephan Meller.
Science Translational Medicine | 2011
Roberto Lande; Dipyaman Ganguly; Valeria Facchinetti; Loredana Frasca; Curdin Conrad; Josh Gregorio; Stephan Meller; Georgios Chamilos; Rosalie Sebasigari; Valeria Riccieri; Roland Bassett; Hideki Amuro; Shirou Fukuhara; Tomoki Ito; Yong-Jun Liu; Michel Gilliet
In systemic lupus erythematosus, neutrophils release peptide/self-DNA complexes that trigger plasmacytoid dendritic cell activation and autoantibody formation. Lupus Neutrophils Cast a Wide NET Systemic lupus erythematosus, also known as SLE or lupus, is a systemic, chronic autoimmune disease that can affect the skin, joints, kidneys, and other organs. In lupus, the body’s immune system turns against antigens in the body’s own nuclei, with activated B cells producing antibodies against self-DNA and associated proteins. The resulting immune complexes accumulate in the body, causing inflammation and tissue damage. Now, two new studies, by Lande et al. and Garcia-Romo et al., demonstrate a role for neutrophils and the “neutrophil extracellular traps,” a specialized structure they release when activated, in the pathogenesis of the disease. A key characteristic of lupus is the presence of chronically activated plasmacytoid dendritic cells, which secrete type I interferons. Lupus patients also display increased numbers of immature neutrophils in the blood, but the exact role of neutrophils in the disease had been unclear. Lande et al. began with the observation that patient serum contains immunogenic complexes that include the antimicrobial peptide LL37, human neutrophil peptide (HNP), and self-DNA. These complexes are taken up by and activate dendritic cells, and patients carry antibodies directed against LL37, HNP, and self-DNA. What is the origin of these complexes? Activated neutrophils can undergo NETosis, a particular type of cell death in which their nuclear DNA is released in long chromatin filaments that form web-like structures, neutrophil extracellular traps (NETs). NETs contain antimicrobial peptides, and can entrap bacteria, enabling them to be killed. Lande et al. now show that the anti-LL37 and anti-HNP antibodies present in lupus patient serum can activate neutrophils and induce them to release NETs. Patient-derived neutrophils release more NETs upon exposure to antibody than control neutrophils. In a parallel study, Garcia-Romo et al. look in detail at neutrophils in lupus, and show that lupus patient neutrophils undergo accelerated cell death in culture. Anti-ribonucleoprotein antibodies present in patient serum induce NETosis, and the released NETs contain LL37 and another neutrophil protein, HMGB1. Induction of NETosis requires FcRIIa, signaling through the pattern recognition receptor Toll-like receptor 7, and formation of reactive oxygen species. Garcia-Romo et al. also show that these NETs potently activate dendritic cells, leading to secretion of high levels of interferon-α. Together, these findings portray an important role for neutrophils in lupus pathogenesis, whereby neutrophils activated by anti-self antibodies release NETs. These NETs, which contain antimicrobial peptides complexed with self-DNA, activate plasmacytoid dendritic cells, leading to interferon release and furtherment and aggravation of inflammation and disease. Systemic lupus erythematosus (SLE) is a severe and incurable autoimmune disease characterized by chronic activation of plasmacytoid dendritic cells (pDCs) and production of autoantibodies against nuclear self-antigens by hyperreactive B cells. Neutrophils are also implicated in disease pathogenesis; however, the mechanisms involved are unknown. Here, we identified in the sera of SLE patients immunogenic complexes composed of neutrophil-derived antimicrobial peptides and self-DNA. These complexes were produced by activated neutrophils in the form of web-like structures known as neutrophil extracellular traps (NETs) and efficiently triggered innate pDC activation via Toll-like receptor 9 (TLR9). SLE patients were found to develop autoantibodies to both the self-DNA and antimicrobial peptides in NETs, indicating that these complexes could also serve as autoantigens to trigger B cell activation. Circulating neutrophils from SLE patients released more NETs than those from healthy donors; this was further stimulated by the antimicrobial autoantibodies, suggesting a mechanism for the chronic release of immunogenic complexes in SLE. Our data establish a link between neutrophils, pDC activation, and autoimmunity in SLE, providing new potential targets for the treatment of this devastating disease.
Journal of Experimental Medicine | 2009
Dipyaman Ganguly; Georgios Chamilos; Roberto Lande; Josh Gregorio; Stephan Meller; Valeria Facchinetti; Bernhard Homey; Franck J. Barrat; Tomasz Zal; Michel Gilliet
Dendritic cell (DC) responses to extracellular self-DNA and self-RNA are prevented by the endosomal seclusion of nucleic acid–recognizing Toll-like receptors (TLRs). In psoriasis, however, plasmacytoid DCs (pDCs) sense self-DNA that is transported to endosomal TLR9 upon forming a complex with the antimicrobial peptide LL37. Whether LL37 also interacts with extracellular self-RNA and how this may contribute to DC activation in psoriasis is not known. Here, we report that LL37 can bind self-RNA released by dying cells, protect it from extracellular degradation, and transport it into endosomal compartments of DCs. In pDC, self-RNA–LL37 complexes activate TLR7 and, like self-DNA–LL37 complexes, trigger the secretion of IFN-α without inducing maturation or the production of IL-6 and TNF-α. In contrast to self-DNA–LL37 complexes, self-RNA–LL37 complexes also trigger the activation of classical myeloid DCs (mDCs). This occurs through TLR8 and leads to the production of TNF-α and IL-6, and the differentiation of mDCs into mature DCs. We also found that self-RNA–LL37 complexes are present in psoriatic skin lesions and are associated with mature mDCs in vivo. Our results demonstrate that the cationic antimicrobial peptide LL37 converts self-RNA into a trigger of TLR7 and TLR8 in human DCs, and provide new insights into the mechanism that drives the auto-inflammatory responses in psoriasis.
Journal of Experimental Medicine | 2010
Josh Gregorio; Stephan Meller; Curdin Conrad; Anna Di Nardo; Bernhard Homey; Antti Lauerma; Naoko Arai; Richard L. Gallo; John DiGiovanni; Michel Gilliet
Cutaneous injury in mice drives transient TLR7- and TLR9-mediated production of type I interferon by plasmacytoid dendritic cells, which is required for re-epithelialization of the skin.
Journal of Immunology | 2005
Michael Gombert; Marie-Caroline Dieu-Nosjean; Franziska Winterberg; Erich Bünemann; Robert Kubitza; Ludivine Da Cunha; Anna Haahtela; Sari Lehtimäki; Anja Müller; Juliane Rieker; Stephan Meller; Andor Pivarcsi; Andrea Koreck; Wolf H. Fridman; Hans Walter Zentgraf; Hermann Pavenstädt; Ali Amara; Christophe Caux; Lajos Kemény; Harri Alenius; Antti Lauerma; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10–20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1α) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.
The New England Journal of Medicine | 2014
L. van Bon; Alsya J. Affandi; Jasper Broen; Romy B. Christmann; R. J. Marijnissen; Lukasz Stawski; Giuseppina Farina; Giuseppina Stifano; Allison Mathes; Marta Cossu; Michael York; Cindy Collins; Mark H. Wenink; R. Huijbens; Roger Hesselstrand; Tore Saxne; Michael Dimarzio; Dirk Wuttge; Sandeep K. Agarwal; John D. Reveille; Shervin Assassi; Maureen D. Mayes; Yanhui Deng; Joost P. H. Drenth; J. de Graaf; M. den Heijer; Cees G. M. Kallenberg; M. Bijl; Arnoud Loof; W. B. van den Berg
BACKGROUND Plasmacytoid dendritic cells have been implicated in the pathogenesis of systemic sclerosis through mechanisms beyond the previously suggested production of type I interferon. METHODS We isolated plasmacytoid dendritic cells from healthy persons and from patients with systemic sclerosis who had distinct clinical phenotypes. We then performed proteome-wide analysis and validated these observations in five large cohorts of patients with systemic sclerosis. Next, we compared the results with those in patients with systemic lupus erythematosus, ankylosing spondylitis, and hepatic fibrosis. We correlated plasma levels of CXCL4 protein with features of systemic sclerosis and studied the direct effects of CXCL4 in vitro and in vivo. RESULTS Proteome-wide analysis and validation showed that CXCL4 is the predominant protein secreted by plasmacytoid dendritic cells in systemic sclerosis, both in circulation and in skin. The mean (±SD) level of CXCL4 in patients with systemic sclerosis was 25,624±2652 pg per milliliter, which was significantly higher than the level in controls (92.5±77.9 pg per milliliter) and than the level in patients with systemic lupus erythematosus (1346±1011 pg per milliliter), ankylosing spondylitis (1368±1162 pg per milliliter), or liver fibrosis (1668±1263 pg per milliliter). CXCL4 levels correlated with skin and lung fibrosis and with pulmonary arterial hypertension. Among chemokines, only CXCL4 predicted the risk and progression of systemic sclerosis. In vitro, CXCL4 down-regulated expression of transcription factor FLI1, induced markers of endothelial-cell activation, and potentiated responses of toll-like receptors. In vivo, CXCL4 induced the influx of inflammatory cells and skin transcriptome changes, as in systemic sclerosis. CONCLUSIONS Levels of CXCL4 were elevated in patients with systemic sclerosis and correlated with the presence and progression of complications, such as lung fibrosis and pulmonary arterial hypertension. (Funded by the Dutch Arthritis Association and others.).
Cancer Research | 2012
Curdin Conrad; Josh Gregorio; Yi Hong Wang; Stephan Meller; Shino Hanabuchi; Sonya Anderson; Neely Atkinson; Pedro T. Ramirez; Yong-Jun Liu; Ralph S. Freedman; Michel Gilliet
Epithelial ovarian cancer (EOC) is the fifth most common cause of cancer death among women. Despite its immunogenicity, effective antitumor responses are limited, due, in part, to the presence of forkhead box protein 3-positive (Foxp3(+)) T regulatory (Treg) cells in the tumor microenvironment. However, the mechanisms that regulate the accumulation and the suppressive function of these Foxp3(+) Treg cells are poorly understood. Here, we found that the majority of Foxp3(+) Treg cells accumulating in the tumor microenvironment of EOCs belong to the subset of Foxp3(+) Treg cells expressing inducible costimulator (ICOS). The expansion and the suppressive function of these cells were strictly dependent on ICOS-L costimulation provided by tumor plasmacytoid dendritic cells (pDC). Accordingly, ICOS(+) Foxp3(+) Treg cells were found to localize in close vicinity of tumor pDCs, and their number directly correlated with the numbers of pDCs in the tumors. Furthermore, pDCs and ICOS(+) Foxp3(+) Treg cells were found to be strong predictors for disease progression in patients with ovarian cancer, with ICOS(+) Treg cell subset being a stronger predictor than total Foxp3(+) Treg cells. These findings suggest an essential role for pDCs and ICOS-L in immunosuppression mediated by ICOS(+) Foxp3(+) Treg cells, leading to tumor progression in ovarian cancer.
Journal of Immunology | 2004
Andor Pivarcsi; Michael Gombert; Marie-Caroline Dieu-Nosjean; Antti Lauerma; Robert Kubitza; Stephan Meller; Juliane Rieker; Anja Müller; Ludivine Da Cunha; Anna Haahtela; Enikö Sonkoly; Wolf H. Fridman; Harri Alenius; Lajos Kemény; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Andor Pivarcsi; Anja Müller; Andreas Hippe; Juliane Rieker; Anke van Lierop; Martin Steinhoff; Stephan Seeliger; Robert Kubitza; Ulrich Pippirs; Stephan Meller; Peter Arne Gerber; Ruediger Liersch; Erich Buenemann; Enikö Sonkoly; Ulrike Wiesner; Thomas K. Hoffmann; Leonid Schneider; Roland P. Piekorz; Elaine Enderlein; J. Reifenberger; Ulrich Peter Rohr; Rainer Haas; Petra Boukamp; Ingo Haase; Bernd Nürnberg; Thomas Ruzicka; Albert Zlotnik; Bernhard Homey
The novel keratinocyte-specific chemokine CCL27 plays a critical role in the organization of skin-associated immune responses by regulating T cell homing under homeostatic and inflammatory conditions. Here we demonstrate that human keratinocyte-derived skin tumors may evade T cell-mediated antitumor immune responses by down-regulating the expression of CCL27 through the activation of epidermal growth factor receptor (EGFR)–Ras–MAPK-signaling pathways. Compared with healthy skin, CCL27 mRNA and protein expression was progressively lost in transformed keratinocytes of actinic keratoses and basal and squamous cell carcinomas. In vivo, precancerous skin lesions as well as cutaneous carcinomas showed significantly elevated levels of phosphorylated ERK compared with normal skin, suggesting the activation of EGFR–Ras signaling pathways in keratinocyte-derived malignancies. In vitro, exogenous stimulation of the EGFR–Ras signaling pathway through EGF or transfection of the dominant-active form of the Ras oncogene (H-RasV12) suppressed whereas an EGFR tyrosine kinase inhibitor increased CCL27 mRNA and protein production in keratinocytes. In mice, neutralization of CCL27 led to decreased leukocyte recruitment to cutaneous tumor sites and significantly enhanced primary tumor growth. Collectively, our data identify a mechanism of skin tumors to evade host antitumor immune responses.
Journal of Investigative Dermatology | 2010
Giuseppina Farina; Michael York; Mike Di Marzio; Cindy Collins; Stephan Meller; Bernhard Homey; Ian R. Rifkin; Ann Marshak-Rothstein; Timothy R.D.J. Radstake; Robert Lafyatis
Immune activation of fibrosis likely has a crucial role in the pathogenesis of systemic sclerosis (SSc). The aim of this study was to better understand the innate immune regulation and associated IFN- and transforming growth factor-β (TGFβ)-responsive gene expression in SSc skin and dermal fibroblasts, in particular the effect of different Toll-like receptor (TLR) ligands. To better understand the relationship between inflammation and fibrosis in vivo, we developed a murine model for chronic innate immune stimulation. We found that expression of both IFN- and TGFβ-responsive genes is increased in SSc skin and SSc fibroblasts when stimulated by TLR ligands. In contrast, cutaneous lupus skin showed much more highly upregulated IFN-responsive and much less highly upregulated TGFβ-responsive gene expression. Of the TLRs ligands tested, the TLR3 ligand, polyinosinic/polycytidylic acid (Poly(I:C)), most highly increased fibroblast expression of both IFN- and TGFβ-responsive genes as well as TLR3. Chronic subcutaneous immune stimulation by Poly(I:C) stimulated inflammation, and IFN- and TGFβ-responsive gene expression. However, in this model, type I IFNs had no apparent role in regulating TGFβ activity in the skin. These results suggest that TLR agonists may be important stimuli of dermal fibrosis, which is potentially mediated by TLR3 or other innate immune receptors.
Blood | 2012
Georgios Chamilos; Josh Gregorio; Stephan Meller; Roberto Lande; Dimitrios P. Kontoyiannis; Robert L. Modlin; Michel Gilliet
The intracellular location of nucleic acid sensors prevents recognition of extracellular self-DNA released by dying cells. However, on forming a complex with the endogenous antimicrobial peptide LL37, extracellular DNA is transported into endosomal compartments of plasmacytoid dendritic cells, leading to activation of Toll-like receptor-9 and induction of type I IFNs. Whether LL37 also transports self-DNA into nonplasmacytoid dendritic cells, leading to type I IFN production via other intracellular DNA receptors is unknown. Here we found that LL37 very efficiently transports self-DNA into monocytes, leading the production of type I IFNs in a Toll-like receptor-independent manner. This type I IFN induction was mediated by double-stranded B form DNA, regardless of its sequence, CpG content, or methylation status, and required signaling through the adaptor protein STING and TBK1 kinase, indicating the involvement of cytosolic DNA sensors. Thus, our study identifies a novel link between the antimicrobial peptides and type I IFN responses involving DNA-dependent activation of cytosolic sensors in monocytes.