Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephan Reitzenstein is active.

Publication


Featured researches published by Stephan Reitzenstein.


Applied Physics Letters | 2010

Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency

T. Heindel; Christian Schneider; M. Lermer; Soon-Hong Kwon; T. Braun; Stephan Reitzenstein; Sven Höfling; M. Kamp; A. Forchel

We report on triggered single photon emission from low mode volume electrically driven quantum dot-micropillar cavities at repetition rates of up to 220 MHz. Due to an optimized layout of the doped planar microcavity and an advanced lateral current injection scheme, highly efficient single photon sources are realized. While g(2)(0)-values as low as 0.13±0.05 and a Purcell factor of 4 are observed for a 2.0 μm diameter micropillar, single photon emission at a rate of (35±7) MHz and an overall efficiency of (34±7)% are demonstrated for a 3.0 μm device.


Physical Review Letters | 2009

Post-Selected Indistinguishable Photons from the Resonance Fluorescence of a Single Quantum Dot in a Microcavity

Serkan Ates; S. M. Ulrich; Stephan Reitzenstein; A. Löffler; A. Forchel; P. Michler

Applying continuous-wave pure resonant s-shell optical excitation of individual quantum dots in a high-quality micropillar cavity, we demonstrate the generation of post-selected indistinguishable photons in resonance fluorescence. Close to ideal visibility contrast of 90% is verified by polarization-dependent Hong-Ou-Mandel two-photon interference measurements. Furthermore, a strictly resonant continuous-wave excitation together with controlling the spontaneous emission lifetime of the single quantum dots via tunable emitter-mode coupling (Purcell) is proven as a versatile scheme to generate close to Fourier transform-limited (T2/(2T1)=0.91) single photons even at 80% of the emission saturation level.


Nature Communications | 2015

Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography

Manuel Gschrey; Alexander Thoma; Peter Schnauber; Mark Seifried; Ronny Schmidt; Benjamin Wohlfeil; Luzy Krüger; Jan-Hindrik Schulze; Tobias Heindel; Sven Burger; Frank Schmidt; A. Strittmatter; Sven Rodt; Stephan Reitzenstein

The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.The prospect of realizing building blocks for long-distance quantum communication is a major driving force for the development of advanced nanophotonic devices. Significant progress has been achieved in this field with respect to the fabrication of efficient quantum-dot-based single-photon sources. More recently, even spin-photon entanglement and quantum teleportation have been demonstrated in semiconductor systems. These results are considered as crucial steps towards the realization of a quantum repeater. The related work has almost exclusively been performed on self-assembled quantum dots (QDs) and random device technology. At this point it is clear that further progress in this field towards real applications will rely crucially on deterministic device technologies which will, for instance, enable the processing of bright quantum light sources with pre-defined emission energy. Here we report on enhanced photon-extraction efficiency from monolithically integrated microlenses which are coupled deterministically to single QDs. The microlenses with diameters down to 800 nm were aligned to single QDs by in-situ electron-beam lithography using a low-temperature cathodoluminescence setup. This deterministic device technology allowed us to obtain an enhancement of photon extraction efficiency for QDs integrated into microlenses as compared to QDs in unstructured surfaces. The excellent optical quality of the structures is demonstrated by cathodoluminescence and micro-photoluminescence spectroscopy. A Hong-Ou-Mandel experiment states the emission of single indistinguishable photons.


Nature | 2009

Direct observation of correlations between individual photon emission events of a microcavity laser

Jan Wiersig; Christopher Gies; F. Jahnke; Marc Assmann; Berstermann T; M. Bayer; C. Kistner; Stephan Reitzenstein; Christian Schneider; Sven Höfling; A. Forchel; C. Kruse; J. Kalden; D. Hommel

Lasers are recognized for coherent light emission, the onset of which is reflected in a change in the photon statistics. For many years, attempts have been made to directly measure correlations in the individual photon emission events of semiconductor lasers. Previously, the temporal decay of these correlations below or at the lasing threshold was considerably faster than could be measured with the time resolution provided by the Hanbury Brown/Twiss measurement set-up used. Here we demonstrate a measurement technique using a streak camera that overcomes this limitation and provides a record of the arrival times of individual photons. This allows us to investigate the dynamical evolution of correlations between the individual photon emission events. We apply our studies to micropillar lasers with semiconductor quantum dots as the active material, operating in the regime of cavity quantum electrodynamics. For laser resonators with a low cavity quality factor, Q, a smooth transition from photon bunching to uncorrelated emission with increasing pumping is observed; for high-Q resonators, we see a non-monotonic dependence around the threshold where quantum light emission can occur. We identify regimes of dynamical anti-bunching of photons in agreement with the predictions of a microscopic theory that includes semiconductor-specific effects.


Nature Photonics | 2009

Non-resonant dot|[ndash]|cavity coupling and its potential for resonant single-quantum-dot spectroscopy

Serkan Ates; S. M. Ulrich; A. Ulhaq; Stephan Reitzenstein; A. Löffler; Sven Höfling; A. Forchel; P. Michler

Mechanisms of distinct resonance in microcavities driven by strongly detuned single quantum dots are not well understood. Investigation of non-resonant dot–cavity coupling of individual quantum dots in micropillars now suggests a dominant role of phonon-mediated dephasing. This new perspective may have implications for single-photon sources, quantum information applications and spectroscopy.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Properties of GaN Nanowires Grown by Molecular Beam Epitaxy

L. Geelhaar; C. Chèze; B. Jenichen; O. Brandt; C. Pfüller; S. Münch; R. Rothemund; Stephan Reitzenstein; A. Forchel; Th. Kehagias; Ph. Komninou; G. P. Dimitrakopulos; Th. Karakostas; Leonardo Lari; Paul R. Chalker; Mhairi Gass; H. Riechert

On Si(1 1 1) and Si(0 0 1), GaN nanowires (NWs) form in a self-induced way without the need for any external material. On sapphire, NW growth is induced by Ni collectors. Both types of NWs exhibit the wurtzite crystal structure and grow in the Ga-polar C-direction perpendicular to the substrate. The NW sidewalls are M-plane facets, although on the Ni-induced NWs also A-plane segments form, if the growth temperature is low. Both self-induced and collector-induced NWs are free of strain and epitaxially aligned to the substrate, but in particular the former show a significant spread in tilt and twist caused by a mostly amorphous interfacial layer of Si-N. The self-induced NWs are virtually free of extended defects, but the collector-induced NWs contain many stacking faults. The photoluminescence of the former is significantly brighter and sharper. The spectra of single, dispersed, self-induced NWs contain extremely sharp excitonic lines. Significant emission is caused by excitons bound to donors close to the surface whose binding energy is reduced compared to the bulk value. In comparison, both the microstructure and optical properties of the self-induced NWs are superior. The limited material quality of the collector-induced NWs can be explained by detrimental effects of the collector.


Journal of Physics D | 2010

Quantum dot micropillars

Stephan Reitzenstein; A. Forchel

This topical review provides an overview of quantum dot micropillars and their application in cavity quantum electrodynamics (cQED) experiments. The development of quantum dot micropillars is motivated by the study of fundamental cQED effects in solid state and their exploitation in novel light sources. In general, light–matter interaction occurs when the dipole of an emitter couples to the ambient light field. The corresponding coupling strength is strongly enhanced in the framework of cQED when the emitter is located inside a low mode volume microcavity providing three-dimensional photon confinement on a length scale of the photon wavelength. In addition, coherent coupling between light and matter, which is essential for applications in quantum information processing, can be achieved when dissipative losses, predominantly due to photon leakage out of the cavity, are strongly reduced. In this paper, we will demonstrate that high-quality, low mode volume quantum dot micropillars represent an excellent system for the observation of cQED effects. In the first part the fabrication and the technological aspects of quantum dot micropillars will be discussed with a focus on the AlGaAs material system. The discussion involves the epitaxial growth and the processing of optically as well as electrically driven micropillar structures. Moreover, micropillars realized in alternative material systems and other resonator geometries will be addressed briefly. The second part will focus on the optical characterization of micropillar cavities with respect to their mode structure and the quality (Q) factor for different device geometries and resonator layouts. In the final part, we will present cQED experiments with quantum dot micropillars. Here, weak and strong coupling effects in the framework of cQED will be presented. These effects are strongly related to possible applications of quantum dot micropillars, such as single photon sources and low threshold microlasers, which will also be discussed. The paper will close with an outlook on current and future developments and a summary.


european quantum electronics conference | 2011

Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity

Kristian Høeg Madsen; Serkan Ates; Toke Lund-Hansen; A. Löffler; Stephan Reitzenstein; A. Forchel; Peter Lodahl

All-solid-state cavity quantum electrodynamics (CQED) systems based on quantum dots (QDs) in nanophotonic cavities provide a promising platform for practical implementations of quantum information protocols. The ability to enter the coherent-coupling regime was demonstrated by recording detuning-dependent emission spectra [1] proving that the QD-cavity coupling is so strong that there is ‘memory’ in the system, i.e. non-Markovian effects. The influence of phonons on these effects has also been studied [2].


Physical Review Letters | 2012

Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments.

M. Lermer; Niels Gregersen; Florian Dunzer; Stephan Reitzenstein; Sven Höfling; Jesper Mørk; L. Worschech; M. Kamp; A. Forchel

We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85  μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.


New Journal of Physics | 2012

Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range

T. Heindel; C. A. Kessler; Markus Rau; Christian Schneider; Martin Fuerst; F. Hargart; Wolfgang-Michael Schulz; M. Eichfelder; Robert Rossbach; Sebastian Nauerth; M. Lermer; Henning Weier; Michael Jetter; M. Kamp; Stephan Reitzenstein; Sven Hoefling; P. Michler; Harald Weinfurter; A. Forchel

We report on in-lab free space quantum key distribution (QKD) experiments over 40cm distance using highly efficient electrically driven quantum dot single-photon sources emitting in the red as well as near-infrared spectral range. In the case of infrared emitting devices, we achieve sifted key rates of 27.2kbits 1 (35.4kbits 1 ) at a quantum bit error rate (QBER) of 3.9% (3.8%) and a g (2) (0) value of 0.35 (0.49) at moderate (high) excitation. The

Collaboration


Dive into the Stephan Reitzenstein's collaboration.

Top Co-Authors

Avatar

Sven Höfling

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

M. Kamp

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Sven Rodt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Tobias Heindel

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

A. Strittmatter

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Manuel Gschrey

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Jan-Hindrik Schulze

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Alexander Thoma

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

C. Hopfmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ronny Schmidt

Technical University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge