Stephanie Zaleski
Northwestern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie Zaleski.
Chemical Reviews | 2017
Alyssa B. Zrimsek; Naihao Chiang; Michael Mattei; Stephanie Zaleski; Michael O. McAnally; Craig T. Chapman; Anne Henry; George C. Schatz; Richard P. Van Duyne
Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.
Accounts of Chemical Research | 2016
Stephanie Zaleski; Andrew J. Wilson; Michael Mattei; Xu Chen; Guillaume Goubert; M. Fernanda Cardinal; Katherine A. Willets; Richard P. Van Duyne
The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical events: single-molecule SERS (SMSERS), superlocalization SERS imaging, and tip-enhanced Raman spectroscopy (TERS). While all of the studies we discuss probe model redox dye systems, the experiments described herein push the study of nanoscale electrochemistry toward the fundamental limit, in terms of both chemical sensitivity and spatial resolution. The second half of this Account discusses current experimental strategies for studying nanoelectrochemistry with SERS techniques, which includes relevant electrochemically and optically active molecules, substrates, and substrate functionalization methods. In particular, we highlight the wide variety of SERS-active substrates and optically active molecules that can be implemented for EC-SERS, as well as the need to carefully characterize both the electrochemistry and resultant EC-SERS response of each new redox-active molecule studied. Finally, we conclude this Account with our perspective on the future directions of studying nanoscale electrochemistry with SERS/TERS, which includes the integration of SECM with TERS and the use of theoretical methods to further describe the fundamental intricacies of single-molecule, single-site electrochemistry at the nanoscale.
Journal of the American Chemical Society | 2014
Dmitry Kurouski; Stephanie Zaleski; Francesca Casadio; Richard P. Van Duyne; Nilam C. Shah
Confirmatory, nondestructive, and noninvasive identification of colorants in situ is of critical importance for the understanding of historical context and for the long-term preservation of cultural heritage objects. Although there are several established techniques for analyzing cultural heritage materials, there are very few analytical methods that can be used for molecular characterization when very little sample is available, and a minimally invasive approach is required. Tip-enhanced Raman spectroscopy (TERS) is a powerful analytical technique whose key features include high mass sensitivity, high spatial resolution, and precise positioning of the tip. In the current proof-of-concept study we utilized TERS to identify indigo dye and iron gall ink in situ on Kinwashi paper. In addition, TERS was used to identify iron gall ink on a historical document with handwritten text dated to the 19th century. We demonstrate that TERS can identify both of these colorants directly on paper. Moreover, vibrational modes from individual components of a complex chemical mixture, iron gall ink, can be identified. To the best of our knowledge, this is the first demonstration of in situ TERS for colorants of artistic relevance directly on historical materials. Overall, this work demonstrates the great potential of TERS as an additional spectroscopic tool for minimally invasive compositional characterization of artworks in situ and opens exciting new possibilities for cultural heritage research.
Analytical Chemistry | 2017
Stephanie Zaleski; Kathleen A. Clark; Madison M. Smith; Jan Y. Eilert; Mark J. Doty; Richard P. Van Duyne
Errors in intravenous (IV) drug therapies can cause human harm and even death. There are limited label-free methods that can sensitively monitor the identity and quantity of the drug being administered. Normal Raman spectroscopy (NRS) provides a modestly sensitive, label-free, and completely noninvasive means of IV drug sensing. In the case that the analyte cannot be detected within its clinical range with Raman, a label-free surface-enhanced Raman spectroscopy (SERS) approach can be implemented to detect the analyte of interest. In this work, we demonstrate two individual cases where we use NRS and electrochemical SERS (EC-SERS) to detect IV therapy analytes within their clinically relevant ranges. We implement NRS to detect gentamicin, a commonly IV-administered antibiotic and EC-SERS to detect dobutamine, a drug commonly administered after heart surgery. In particular, dobutamine detection with EC-SERS was found to have a limit of detection 4 orders of magnitude below its clinical range, highlighting the excellent sensitivity of SERS. We also demonstrate the use of hand-held Raman instrumentation for NRS and EC-SERS, showing that Raman is a highly sensitive technique that is readily applicable in a clinical setting.
Archive | 2016
Federica Pozzi; Stephanie Zaleski; Francesca Casadio; Marco Leona; John R. Lombardi; Richard P. Van Duyne
In recent years, powerful physical processes occurring in the vicinity of nanoscale metal surfaces have been exploited in the art world for the detection of trace amounts of colorants with surface-enhanced Raman spectroscopy (SERS). With this technique, naturally occurring and man-made organic molecules used as dyes and pigments in objects from antiquity to the present day are being detected with high molecular specificity and unprecedented sensitivity. This chapter reviews the broad spectrum of SERS analytical methodologies and instrumental improvements that have been developed over the years in the field of cultural heritage science, and discusses significant case studies within different types of works of art and archaeological artifacts.
Journal of Physical Chemistry C | 2015
Stephanie Zaleski; M. Fernanda Cardinal; Jordan M. Klingsporn; Richard P. Van Duyne
Journal of Physical Chemistry C | 2016
Stephanie Zaleski; M. Fernanda Cardinal; Dhabih V. Chulhai; Andrew J. Wilson; Katherine A. Willets; Lasse Jensen; Richard P. Van Duyne
Journal of Physical Chemistry C | 2016
Federica Pozzi; Stephanie Zaleski; Francesca Casadio; Richard P. Van Duyne
Journal of Physical Chemistry C | 2016
Bo Fu; Colin Van Dyck; Stephanie Zaleski; Richard P. Van Duyne; Mark A. Ratner
Archive | 2018
Richard P. Van Duyne; Stephanie Zaleski