Stephen B. Trippel
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen B. Trippel.
Journal of Biological Chemistry | 2003
Paul J. Fanning; Gregory R. Emkey; Robert J. Smith; Alan J. Grodzinsky; Nora Szasz; Stephen B. Trippel
Articular chondrocytes respond to mechanical forces by alterations in gene expression, proliferative status, and metabolic functions. Little is known concerning the cell signaling systems that receive, transduce, and convey mechanical information to the chondrocyte interior. Here, we show that ex vivo cartilage compression stimulates the phosphorylation of ERK1/2, p38 MAPK, and SAPK/ERK kinase-1 (SEK1) of the JNK pathway. Mechanical compression induced a phased phosphorylation of ERK consisting of a rapid induction of ERK1/2 phosphorylation at 10 min, a rapid decay, and a sustained level of ERK2 phosphorylation that persisted for at least 24 h. Mechanical compression also induced the phosphorylation of p38 MAPK in strictly a transient fashion, with maximal phosphorylation occurring at 10 min. Mechanical compression stimulated SEK1 phosphorylation, with a maximum at the relatively delayed time point of 1 h and with a higher amplitude than ERK1/2 and p38 MAPK phosphorylation. These data demonstrate that mechanical compression alone activates MAPK signaling in intact cartilage. In addition, these data demonstrate distinct temporal patterns of MAPK signaling in response to mechanical loading and to the anabolic insulin-like growth factor-I. Finally, the data indicate that compression coactivates distinct signaling pathways that may help define the nature of mechanotransduction in cartilage.
Human Gene Therapy | 2002
Henning Madry; Robert F. Padera; Joachim Seidel; Robert Langer; Lisa E. Freed; Stephen B. Trippel; Gordana Vunjak-Novakovic
The repair of articular cartilage lesions remains a clinical problem. Two novel approaches to cartilage formation, gene transfer and tissue engineering, have been limited by short-term transgene expression in transplanted chondrocytes and inability to deliver regulatory signals to engineered tissues according to specific temporal and spatial patterns. We tested the hypothesis that the transfer of a cDNA encoding the human insulin-like growth factor I (IGF-I) can provide sustained gene expression in cell-polymer constructs in vitro and in vivo and enhance the structural and functional properties of tissue-engineered cartilage. Bovine articular chondrocytes genetically modified to overexpress human IGF-I were seeded into polymer scaffolds, cultured in bioreactors in serum-free medium, and implanted subcutaneously in nude mice; constructs based on nontransfected or lacZ-transfected chondrocytes served as controls. Transgene expression was maintained throughout the duration of the study, more than 4 weeks in vitro followed by an additional 10 days either in vitro or in vivo. Chondrogenesis progressed toward the formation of cartilaginous tissue that was characterized by the presence of glycosaminoglycans, aggrecan, and type II collagen, and the absence of type I collagen. IGF-I constructs contained increased amounts of glycosaminoglycans and collagen and confined-compression equilibrium moduli as compared with controls; all groups had subnormal cellularity. The amounts of glycosaminoglycans and collagen per unit DNA in IGF-I constructs were markedly higher than in constructs cultured in serum-supplemented medium or native cartilage. This enhancement of chondrogenesis by spatially defined overexpression of human IGF-I suggests that cartilage tissue engineering based on genetically modified chondrocytes may be advantageous as compared with either gene transfer or tissue engineering alone.
Journal of Biological Chemistry | 2009
Shuiliang Shi; Scott Mercer; George J. Eckert; Stephen B. Trippel
Several lines of evidence indicate that polypeptide growth factors are important in articular cartilage homeostasis and repair. It is not yet clear how these growth factors are regulated. We tested the hypothesis that the growth factors responsible for regulating cartilage are themselves regulated by growth factors. We delivered insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), and/or transforming growth factor-β1 (TGF-β1) to adult bovine articular chondrocytes in primary culture and measured the resulting changes in IGF-I, FGF-2, and TGF-β1 gene expression and protein production. These growth factors differentially regulated their own and each others gene expression and protein production. In concert, they regulated each other in an interactive fashion. Their interactions ranged from inhibitory to synergistic. The time course of the regulatory effects differed among the individual growth factors and combinations. Growth factor-induced changes in growth factor protein production by articular chondrocytes generally corresponded to the changes in gene expression patterns. These studies suggest that interactions among IGF-I, FGF-2, and TGF-β1 substantially modulate their regulatory functions. The results may help guide the application of growth factors to articular cartilage repair.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2007
Stephen B. Trippel; Magali Cucchiarini; Henning Madry; Shuiliang Shi; Congrong Wang
Abstract Articular cartilage serves as the gliding surface of joints. It is susceptible to damage from trauma and from degenerative diseases. Restoration of damaged articular cartilage may be achievable through the use of cell-regulatory molecules that augment the reparative activities of the cells, inhibit the cells degradative activities, or both. A variety of such molecules have been identified. These include insulin-like growth factor I, fibroblast growth factor 2, bone morphogenetic proteins 2, 4, and 7, and interleukin-1 receptor antagonist. It is now possible to transfer the genes encoding such molecules into articular cartilage and synovial lining cells. Although preliminary, data from in-vitro and in-vivo studies suggest that gene therapy can deliver such potentially therapeutic agents to protect existing cartilage and to build new cartilage.
Growth Factors Journal | 2013
Shuiliang Shi; Scott Mercer; George J. Eckert; Stephen B. Trippel
Of the many classes of molecules regulated by growth factors, growth factors themselves are not well investigated. We tested the hypothesis that combinations of endogenous growth factors interactively regulate the production of other growth factors. Growth factors have therapeutic potential for articular cartilage repair, and gene transfer is a promising approach to growth factor delivery. We tested the hypothesis using adult bovine articular chondrocytes treated with combinations of cDNAs encoding insulin-like growth factor I, bone morphogenetic protein-2 and protein-7, transforming growth factor β1, and fibroblast growth factor 2. We found that these growth factor transgenes regulated each others growth factor production. This regulation ranged from stimulation to inhibition. Regulation by multiple transgenes was not predictable from the regulatory actions of the individual transgenes. Such interactions may be important for the selection of growth factor genes for cell-based therapies, including articular cartilage repair.
Cartilage | 2017
Shuiliang Shi; Congrong Wang; Albert Chan; Kashif Kirmani; George J. Eckert; Stephen B. Trippel
Objective The production of extracellular matrix is a necessary component of articular cartilage repair. Gene transfer is a promising method to improve matrix biosynthesis by articular chondrocytes. Gene transfer may employ transgenes encoding regulatory factors that stimulate the production of matrix proteins, or may employ transgenes that encode the proteins themselves. The objective of this study was to determine which of these 2 approaches would be the better choice for further development. We compared these 2 approaches using the transgenes encoding the structural matrix proteins, aggrecan or type II collagen, and the transgene encoding the anabolic factor, insulin-like growth factor I (IGF-I). Methods We transfected adult bovine articular chondrocytes with constructs encoding type II collagen, aggrecan, or IGF-I, and measured the expression of type II collagen (COL2A1) and aggrecan (ACAN) from their native genes and from their transgenes. Results IGF-I gene (IGF1) transfer increased the expression of the native chondrocyte COL2A1 and ACAN genes 2.4 and 2.9 times control, respectively. COL2A1 gene transfer did not significantly increase COL2A1 transcripts, even when the transgene included the genomic COL2A1 regulatory sequences stimulated by chondrogenic growth factors. In contrast, ACAN gene transfer increased ACAN transcripts up to 3.4 times control levels. IGF1, but not ACAN, gene transfer increased aggrecan protein production. Conclusion Taken together, these results suggest that the type II collagen and aggrecan production required for articular cartilage repair will be more effectively achieved by genes that encode anabolic regulatory factors than by genes that encode the matrix molecules themselves.
Archive | 2001
Henning Madry; Gordana Vunjak-Novakovic; Stephen B. Trippel; Lisa E. Freed; Robert Langer
Author | 2018
Shuiliang Shi; Brian J. Kelly; Congrong Wang; Ken Klingler; Albert Chan; George J. Eckert; Stephen B. Trippel
PMC | 2015
Shuiliang Shi; Congrong Wang; Anthony J. Acton; George J. Eckert; Stephen B. Trippel
Archive | 2005
Henning Madry; Robert Langer; Lisa E. Freed; Stephen B. Trippel; Gordana Vunjak-Novakovic