Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Seedial is active.

Publication


Featured researches published by Stephen Seedial.


Journal of Vascular Surgery | 2012

Transforming growth factor-β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways

Pasithorn A. Suwanabol; Stephen Seedial; Xudong Shi; Fan Zhang; Dai Yamanouchi; Drew A. Roenneburg; Bo Liu; K. Craig Kent

INTRODUCTION We have previously demonstrated that transforming growth factor-β (TGF-β) in the presence of elevated levels of Smad3, its primary signaling protein, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. The mechanism is partly through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluated the role of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TGF-β-induced VSMC proliferation. METHODS Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with small interfering RNA (siRNA). For in vivo experiments, male Sprague-Dawley rats underwent carotid balloon injury, followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK, and proliferating cell nuclear antigen. RESULTS In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time-dependent and concentration-dependent manner. Overexpression of the signaling protein Smad3 enhanced TGF-β-induced activation of ERK MAPK, whereas inhibition of Smad3 with a siRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by proliferating cell nuclear antigen. CONCLUSIONS Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that TGF-β enhances VSMC proliferation through a Smad3/ERK MAPK signaling pathway. These findings at least partly explain the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.


Journal of Vascular Surgery | 2012

Accelerated Aneurysmal Dilation Associated with Apoptosis and Inflammation in a Newly Developed Calcium Phosphate Rodent Abdominal Aortic Aneurysm Model

Dai Yamanouchi; Stephanie Morgan; Colin Stair; Stephen Seedial; Justin Lengfeld; K. Craig Kent; Bo Liu

OBJECTIVE The calcium chloride (CaCl(2)) model is a widely accepted rodent model for abdominal aortic aneurysms (AAAs). Calcium deposition, mainly consisting of calcium phosphate (CaPO(4)) crystals, has been reported to exist in human and experimental aneurysms. CaPO(4) crystals have been used for in vitro DNA transfection by mixing CaCl(2) and phosphate-buffered saline (PBS). Here, we describe accelerated aneurysm formation resulting from a modification of the CaCl(2) model. METHODS A modified CaCl(2) model, the CaPO(4) model, was created by applying PBS onto the mouse infrarenal aorta after CaCl(2) treatment. Morphologic, histologic, and immunohistochemical analyses were performed on arteries treated with the CaPO(4) model and the conventional CaCl(2) model as the control. In vitro methods were performed using a mixture of CaCl(2) and PBS to create CaPO(4) crystals. CaPO(4)- induced apoptosis of primary cultured mouse vascular smooth muscle cells (VSMCs) was measured by DNA fragmentation enzyme-linked immunosorbent assay. RESULTS The CaPO(4) model produces AAA, defined as an increase of ≥50% in the diameter of the aorta, faster than in the CaCl(2) model. The CaPO(4) model showed significantly larger aneurysmal dilation at 7, 28, and 42 days, as reflected by a maximum diameter (measured in mm) fold-change of 1.69 ± 0.07, 1.99 ± 0.14, and 2.13 ± 0.09 vs 1.22 ± 0.04, 1.48 ± 0.07, and 1.68 ± 0.06 in a CaCl(2) model, respectively (n = 6; P < .05). A semiquantitative grading analysis of elastin fiber integrity at 7 days revealed a significant increase in elastin degradation in the CaPO(4) model compared with the CaCl(2) model (2.7 ± 0.2 vs 1.5 ± 0.2; n = 6; P < .05). A significantly higher level of apoptosis occurred in the CaPO(4) model (apoptosis index at 1, 2, and 3 days postsurgery: 0.26 ± 0.14, 0.37 ± 0.14, and 0.33 ± 0.08 vs 0.012 ± 0.10, 0.15 ± 0.02, and 0.12 ± 0.05 in the conventional CaCl(2) model; n = 3; P < .05). An enhancement of macrophage infiltration and calcification was also observed at 3 and 7 days in the CaPO(4) model. CaPO(4) induced approximately 3.7 times more apoptosis in VSMCs than a mixture of CaCl(2) (n = 4; P < .0001) in vitro. CONCLUSIONS The CaPO(4) model accelerates aneurysm formation with the enhancement of apoptosis, macrophage infiltration, and calcium deposition. This modified model, with its rapid and robust dilation, can be used as a new model for AAAs.


Journal of Vascular Surgery | 2012

Basic research studyFrom the Midwestern Vascular Surgical SocietyTransforming growth factor-β increases vascular smooth muscle cell proliferation through the Smad3 and extracellular signal-regulated kinase mitogen-activated protein kinases pathways

Pasithorn A. Suwanabol; Stephen Seedial; Xudong Shi; Fan Zhang; Dai Yamanouchi; Drew A. Roenneburg; Bo Liu; K. Craig Kent

INTRODUCTION We have previously demonstrated that transforming growth factor-β (TGF-β) in the presence of elevated levels of Smad3, its primary signaling protein, stimulates rat vascular smooth muscle cell (VSMC) proliferation and intimal hyperplasia. The mechanism is partly through the nuclear exportation of phosphorylated cyclin-dependent kinase inhibitor p27. The objective of this study is to clarify the downstream pathways through which Smad3 produces its proliferative effect. Specifically, we evaluated the role of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TGF-β-induced VSMC proliferation. METHODS Cultured rat aortic VSMCs were incubated with TGF-β at varying concentrations and times, and phosphorylated ERK was measured by Western blotting. Smad3 was enhanced in VSMCs using an adenovirus expressing Smad3 or inhibited with small interfering RNA (siRNA). For in vivo experiments, male Sprague-Dawley rats underwent carotid balloon injury, followed by intraluminal infection with an adenovirus expressing Smad3. Arteries were harvested at 3 days and subjected to immunohistochemistry for Smad3, phospho-ERK MAPK, and proliferating cell nuclear antigen. RESULTS In cultured VSMCs, TGF-β induced activation and phosphorylation of ERK MAPK in a time-dependent and concentration-dependent manner. Overexpression of the signaling protein Smad3 enhanced TGF-β-induced activation of ERK MAPK, whereas inhibition of Smad3 with a siRNA blocked ERK MAPK phosphorylation in response to TGF-β. These data suggest that Smad3 acts as a signaling intermediate between TGF-β and ERK MAPK. Inhibition of ERK MAPK activation with PD98059 completely blocked the ability of TGF-β/Smad3 to stimulate VSMC proliferation, demonstrating the importance of ERK MAPK in this pathway. Immunoprecipitation of phospho-ERK MAPK and blotting with Smad3 revealed a physical association, suggesting that activation of ERK MAPK by Smad3 requires a direct interaction. In an in vivo rat carotid injury model, overexpression of Smad3 resulted in an increase in phosphorylated ERK MAPK as well as increased VSMC proliferation as measured by proliferating cell nuclear antigen. CONCLUSIONS Our findings demonstrate a mechanism through which TGF-β stimulates VSMC proliferation. Although TGF-β has been traditionally identified as an inhibitor of proliferation, our data suggest that TGF-β enhances VSMC proliferation through a Smad3/ERK MAPK signaling pathway. These findings at least partly explain the mechanism by which TGF-β enhances intimal hyperplasia. Knowledge of this pathway provides potential novel targets that may be used to prevent restenosis.


American Journal of Physiology-heart and Circulatory Physiology | 2012

TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells

Pasithorn A. Suwanabol; Stephen Seedial; Fan Zhang; Xudong Shi; Yi Si; Bo Liu; K. Craig Kent

Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally been known as a potent inhibitor of cellular proliferation. In these studies we explore the signaling pathways through which TGF-β mediates its proliferative effect in vascular SMCs. We found that TGF-β phosphorylates and activates Akt in a time-dependent manner, and this effect is significantly enhanced by overexpression of Smad3. Furthermore, both chemical and molecular inhibition of Smad3 can reverse the effect of TGF-β on Akt. Although we found numerous signaling pathways that might function as intermediates between Smad3 and Akt, p38 appeared the most promising. Overexpression of Smad3 enhanced p38 phosphorylation and inhibition of p38 with a chemical inhibitor or a small interfering RNA blocked TGF-β-induced Akt phosphorylation. Moreover, TGF-β/Smad3 enhancement of SMC proliferation was blocked by inhibition of p38. Phosphorylation of Akt by TGF-β/Smad3 was not dependent on gene expression or protein synthesis, and immunoprecipitation studies revealed a physical association among p38, Akt, and Smad3 suggesting that activation requires a direct protein-protein interaction. Our findings were confirmed in vivo where overexpression of Smad3 in a rat carotid injury model led to enhancement of p-p38, p-Akt, as well as SMC proliferation. Furthermore, inhibition of p38 in vivo led to decreased Akt phosphorylation and SMC proliferation. In summary, our studies reveal a novel pathway whereby TGF-β/Smad3 stimulates SMC proliferation through p38 and Akt. These findings provide a potential mechanism for the substantial effect of TGF-β on intimal hyperplasia and suggest new targets for chemical or molecular prevention of vascular restenosis.


Cell Death and Disease | 2014

TGF-β/Smad3 inhibit vascular smooth muscle cell apoptosis through an autocrine signaling mechanism involving VEGF-A

Xu Dong Shi; Lian-Wang Guo; Stephen Seedial; Yi Si; Bowen Wang; Toshio Takayama; Pasithorn A. Suwanabol; S. Ghosh; Daniel DiRenzo; Bo Liu; K.C. Kent

We have previously shown that in the presence of elevated Smad3, transforming growth factor-β (TGF-β) transforms from an inhibitor to a stimulant of vascular smooth muscle cell (SMC) proliferation and intimal hyperplasia (IH). Here we identify a novel mechanism through which TGF-β/Smad3 also exacerbates IH by inhibiting SMC apoptosis. We found that TGF-β treatment led to inhibition of apoptosis in rat SMCs following viral expression of Smad3. Conditioned media from these cells when applied to naive SMCs recapitulated this effect, suggesting an autocrine pathway through a secreted factor. Gene array of TGF-β/Smad3-treated cells revealed enhanced expression of vascular endothelial growth factor (VEGF), a known inhibitor of endothelial cell apoptosis. We then evaluated whether VEGF is the secreted mediator responsible for TGF-β/Smad3 inhibition of SMC apoptosis. In TGF-β/Smad3-treated cells, VEGF mRNA and protein as well as VEGF secretion were increased. Moreover, recombinant VEGF-A inhibited SMC apoptosis and a VEGF-A-neutralizing antibody reversed the inhibitory effect of conditioned media on SMC apoptosis. Stimulation of SMCs with TGF-β led to the formation of a complex of Smad3 and hypoxia-inducible factor-1α (HIF-1α) that in turn activated the VEGF-A promoter and transcription. In rat carotid arteries following arterial injury, Smad3 and VEGF-A expression were upregulated. Moreover, Smad3 gene transfer further enhanced VEGF expression as well as inhibited SMC apoptosis. Finally, blocking either the VEGF receptor or Smad3 signaling in injured carotid arteries abrogated the inhibitory effect of Smad3 on vascular SMC apoptosis. Taken together, our study reveals that following angioplasty, elevation of both TGF-β and Smad3 leads to SMC secretion of VEGF-A that functions as an autocrine inhibitor of SMC apoptosis. This novel pathway provides further insights into the role of TGF-β in the development of IH.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Elevated Protein Kinase C-δ Contributes to Aneurysm Pathogenesis Through Stimulation of Apoptosis and Inflammatory Signaling

Stephanie Morgan; Dai Yamanouchi; Calvin Harberg; Qiwei Wang; Melissa R. Keller; Yi Si; William J. Burlingham; Stephen Seedial; Justin Lengfeld; Bo Liu

Objective—Apoptosis of smooth muscle cells (SMCs) is a prominent pathological characteristic of abdominal aortic aneurysm (AAA). We have previously shown that SMC apoptosis stimulates proinflammatory signaling in a mouse model of AAA. Here, we test whether protein kinase C-&dgr; (PKC&dgr;), an apoptotic mediator, participates in the pathogenesis of AAA by regulating apoptosis and proinflammatory signals. Methods and Results—Mouse experimental AAA is induced by perivascular administration of CaCl2. Mice deficient in PKC&dgr; exhibit a profound reduction in aneurysmal expansion, SMC apoptosis, and transmural inflammation as compared with wild-type littermates. Delivery of PKC&dgr; to the aortic wall of PKC&dgr;–/– mice restores aneurysm, whereas overexpression of a dominant negative PKC&dgr; mutant in the aorta of wild-type mice attenuates aneurysm. In vitro, PKC&dgr;–/– aortic SMCs exhibit significantly impaired monocyte chemoattractant protein-1 production. Ectopic administration of recombinant monocyte chemoattractant protein-1 to the arterial wall of PKC&dgr;–/– mice restores inflammatory response and aneurysm development. Conclusion—PKC&dgr; is an important signaling mediator for SMC apoptosis and inflammation in a mouse model of AAA. By stimulating monocyte chemoattractant protein-1 expression in aortic SMCs, upregulated PKC&dgr; exacerbates the inflammatory process, in turn perpetuating elastin degradation and aneurysmal dilatation. Inhibition of PKC&dgr; may serve as a potential therapeutic strategy for AAA.


PLOS ONE | 2014

TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation

Xudong Shi; Daniel DiRenzo; Lian-Wang Guo; Sarah Franco; Bowen Wang; Stephen Seedial; K. Craig Kent

Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3∶1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.


Cellular Signalling | 2013

Preferential secretion of collagen type 3 versus type 1 from adventitial fibroblasts stimulated by TGF-β/Smad3-treated medial smooth muscle cells.

Shakti A. Goel; Lian-Wang Guo; Xudong Shi; Rishi Kundi; Gregory Sovinski; Stephen Seedial; Bo Liu; K. Craig Kent

Restenosis, or arterial lumen re-narrowing, occurs in 30-50% of the patients undergoing angioplasty. Adaptive remodeling is the compensatory enlargement of the vessel size, and has been reported to prevent the deleterious effects of restenosis. Our previous studies have shown that elevated transforming growth factor (TGF-β) and its signaling protein Smad3 in the media layer induce adaptive remodeling of angioplastied rat carotid artery accompanying an increase of total collagen in the adventitia. In order to gain insights into a possible role of collagen in Smad3-induced adaptive remodeling, here we have investigated a mechanism of cell-cell communication between medial smooth muscle cells (SMCs) and adventitial fibroblasts in regulating the secretion of two major collagen subtypes. We have identified a preferential collagen-3 versus collagen-1 secretion by adventitial fibroblasts following stimulation by the conditioned medium from the TGF-β1-treated/Smad3-expressing medial smooth muscle cells (SMCs), which contained higher levels of CTGF and IGF2 as compared to control medium. Treating the TGF-β/Smad3-stimulated SMCs with an siRNA to either CTGF or IGF2 reversed the effect of conditioned media on preferential collagen-3 secretion from fibroblasts. Moreover, recombinant CTGF and IGF2 together stimulated adventitial fibroblasts to preferentially secrete collagen-3 versus collagen-1. This is the first study to identify a preferential secretion of collagen-3 versus collagen-1 from adventitial fibroblasts as a result of TGF-β/Smad3 stimulation of medial SMCs, and that CTGF and IGF2 function together to mediate this signaling communication between the two cell types.


Stem Cells | 2016

Local CXCR4 Upregulation in the Injured Arterial Wall Contributes to Intimal Hyperplasia

Xudong Shi; Lian-Wang Guo; Stephen Seedial; Toshio Takayama; Bowen Wang; Mengxue Zhang; Sarah Franco; Yi Si; Mirnal A. Chaudhary; Bo Liu; K. Craig Kent

CXCR4 is a stem/progenitor cell surface receptor specific for the cytokine stromal cell‐derived factor‐1 (SDF‐1α). There is evidence that bone marrow‐derived CXCR4‐expressing cells contribute to intimal hyperplasia (IH) by homing to the arterial subintima which is enriched with SDF‐1α. We have previously found that transforming growth factor‐β (TGFβ) and its signaling protein Smad3 are both upregulated following arterial injury and that TGFβ/Smad3 enhances the expression of CXCR4 in vascular smooth muscle cells (SMCs). It remains unknown, however, whether locally induced CXCR4 expression in SM22 expressing vascular SMCs plays a role in neointima formation. Here, we investigated whether elevated TGFβ/Smad3 signaling leads to the induction of CXCR4 expression locally in the injured arterial wall, thereby contributing to IH. We found prominent CXCR4 upregulation (mRNA, 60‐fold; protein, 4‐fold) in TGFβ‐treated, Smad3‐expressing SMCs. Chromatin immunoprecipitation assays revealed a specific association of the transcription factor Smad3 with the CXCR4 promoter. TGFβ/Smad3 treatment also markedly enhanced SDF‐1α‐induced ERK1/2 phosphorylation as well as SMC migration in a CXCR4‐dependent manner. Adenoviral expression of Smad3 in balloon‐injured rat carotid arteries increased local CXCR4 levels and enhanced IH, whereas SMC‐specific depletion of CXCR4 in the wire‐injured mouse femoral arterial wall produced a 60% reduction in IH. Our results provide the first evidence that upregulation of TGFβ/Smad3 in injured arteries induces local SMC CXCR4 expression and cell migration, and consequently IH. The Smad3/CXCR4 pathway may provide a potential target for therapeutic interventions to prevent restenosis. Stem Cells 2016;34:2744–2757


Archive | 2015

activation and subsequent RhoA activation barrier dysfunction involves Smad2-dependent p38

Sharon Rounds; Qing Lu; Elizabeth O. Harrington; Heather Jackson; Nicole A. Morin; Am J; Craig Kent; Pasithorn A. Suwanabol; Stephen Seedial; Fan Zhang; Xudong Shi; Bo Liu; Dimitrios Georgopoulos; Warren M. Zapol; Kenneth D. Bloch; Eleni Vergadi; Evangelos Kaniaris; Maria Hatziapostolou; Eleni Lagoudaki

Collaboration


Dive into the Stephen Seedial's collaboration.

Top Co-Authors

Avatar

Bo Liu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

K. Craig Kent

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xudong Shi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lian-Wang Guo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Pasithorn A. Suwanabol

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Dai Yamanouchi

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yi Si

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bowen Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Daniel DiRenzo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Fan Zhang

New York Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge