Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen T. Ridgway is active.

Publication


Featured researches published by Stephen T. Ridgway.


The Astrophysical Journal | 2012

Stellar Diameters and Temperatures. II. Main-sequence K- and M-stars

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; Harold A. McAlister; Theo A. ten Brummelaar; Stephen R. Kane; Philip S. Muirhead; Jeremy Jones; Russel J. White; Gail H. Schaefer; David R. Ciardi; Todd J. Henry; Mercedes Lopez-Morales; Stephen T. Ridgway; Douglas R. Gies; Wei-Chun Jao; Bárbara Rojas-Ayala; J. Robert Parks; Laszlo Sturmann; J. Sturmann; Nils H. Turner; C. Farrington; P. J. Goldfinger; David H. Berger

We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the stars bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for ~K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B – V), (V – R), (V – I), (V – J), (V – H), and (V – K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = –0.5 to +0.1 dex and are accurate to ~2%, ~5%, and ~4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the stars observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by ~3%, and underestimate the radii of stars with radii <0.7 R_☉ by ~5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by ~200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.


The Astrophysical Journal | 1980

Effective temperatures of late-type stars: The field giants from K0 to M6

Stephen T. Ridgway; Richard R. Joyce; R.F. Wing

Angular diameters from lunar occultation are combined with infrared photometry to determine effective temperatures, T/sub eff/, for K0--M6 giants. The relation between T/sub eff/ and color temperature, MK spectral type, V--K color, and I (104) --L color are derived. The principal result is a general increase in T/sub eff/ for the cooler spectral types compared to previous calibrations. Throughout the temperature range studied, we obtain excellent agreement with recent model atmosphere computations.


The Astrophysical Journal | 2013

Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations

Tabetha S. Boyajian; Kaspar von Braun; Gerard T. van Belle; C. Farrington; Gail H. Schaefer; Jeremy Jones; Russel J. White; Harold A. McAlister; Theo A. ten Brummelaar; Stephen T. Ridgway; Douglas R. Gies; Laszlo Sturmann; J. Sturmann; Nils H. Turner; P. J. Goldfinger; Norm Vargas

Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR_(J)I_(J)JHK), Cousins (R_(C)I_(C)), Kron (R_(K)I_(K)), Sloan (griz), and WISE (W_(3)W_(4)) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T_eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.


The Astrophysical Journal | 2012

STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS

Tabetha S. Boyajian; Harold A. McAlister; Gerard T. van Belle; Douglas R. Gies; Theo A. ten Brummelaar; Kaspar von Braun; C. Farrington; P. J. Goldfinger; David Patrick O'Brien; J. Robert Parks; N. D. Richardson; Stephen T. Ridgway; Gail H. Schaefer; Laszlo Sturmann; J. Sturmann; Y. Touhami; Nils H. Turner; Russel J. White

We have executed a survey of nearby, main-sequence A-, F-, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars with an average precision of ~1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~1.5%-4% when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the stars surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~1.3 M_☉. Additionally, we compare our measurements to a large sample of eclipsing binary stars, and excellent agreement is seen within both data sets. Finally, we present temperature relations with respect to (B – V) and (V – K) colors as well as spectral type, showing that calibration of effective temperatures with errors ~1% is now possible from interferometric angular diameters of stars.


The Astrophysical Journal | 2011

55 CANCRI: STELLAR ASTROPHYSICAL PARAMETERS, A PLANET IN THE HABITABLE ZONE, AND IMPLICATIONS FOR THE RADIUS OF A TRANSITING SUPER-EARTH

Kaspar von Braun; S. Boyajian Tabetha; Theo A. ten Brummelaar; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Sean N. Raymond; Mercedes Lopez-Morales; Harold A. McAlister; Gail H. Schaefer; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Russel J. White; Nils H. Turner; C. Farrington; P. J. Goldfinger

The bright star 55 Cancri is known to host five planets, including a transiting super-Earth. The study presented here yields directly determined values for 55 Cncs stellar astrophysical parameters based on improved interferometry: R = 0.943 ± 0.010 R_☉, T EFF = 5196 ± 24 K. We use isochrone fitting to determine 55 Cncs age to be 10.2 ± 2.5 Gyr, implying a stellar mass of 0.905 ± 0.015 M_☉. Our analysis of the location and extent of the systems habitable zone (HZ; 0.67-1.32 AU) shows that planet f, with period ~260 days and M sin i = 0.155 M_(Jupiter), spends the majority of the duration of its elliptical orbit in the circumstellar HZ. Though planet f is too massive to harbor liquid water on any planetary surface, we elaborate on the potential of alternative low-mass objects in planet fs vicinity: a large moon and a low-mass planet on a dynamically stable orbit within the HZ. Finally, our direct value for 55 Cancris stellar radius allows for a model-independent calculation of the physical diameter of the transiting super-Earth 55 Cnc e (~2.05 ± 0.15 R_⊕), which, depending on the planetary mass assumed, implies a bulk density of 0.76 ρ_⊕ or 1.07 ρ_⊕.


Astronomical Telescopes and Instrumentation | 1998

Phoenix: a cryogenic high-resolution 1- to 5-μm infrared spectrograph

Kenneth H. Hinkle; Randy W. Cuberly; Neil Gaughan; Julie B. Heynssens; Richard R. Joyce; Stephen T. Ridgway; Paul Schmitt; Jorge E. Simmons

We describe a cryogenic, high-resolution spectrograph (Phoenix) for the 1-5 micrometers region. Phoenix is an echelle spectrograph of the near-Littrow over-under configuration without cross dispersion. The foreoptics include Lyot re- imaging, discrete and circular variable order sorting filters, a selection of slits, and optics for post-slit and Lyot imaging. The entire instrument is cooled to 50 K using two closed cycle coolers. The detector is a Hughes-Santa Barbara 512 X 1024 InSb array. Resolution of 65,000 has been obtained. Throughput without slit losses is 13 percent at 2.3 micrometers . Recent results are discussed. Phoenix is a facility instrument of the National Optical Astronomy Observatories and will be available at CTIO, KPNO, and Gemini.


The Astrophysical Journal | 2011

ASTROPHYSICAL PARAMETERS AND HABITABLE ZONE OF THE EXOPLANET HOSTING STAR GJ 581

Kaspar von Braun; Tabetha S. Boyajian; Stephen R. Kane; Gerard T. van Belle; David R. Ciardi; Mercedes Lopez-Morales; Harold A. McAlister; Todd J. Henry; Wei-Chun Jao; Adric R. Riedel; John P. Subasavage; Gail H. Schaefer; Theo A. ten Brummelaar; Stephen T. Ridgway; Laszlo Sturmann; J. Sturmann; Jude Mazingue; Nils H. Turner; C. Farrington; P. J. Goldfinger; Andrew F. Boden

GJ 581 is an M dwarf host of a multiplanet system. We use long-baseline interferometric measurements from the CHARA Array, coupled with trigonometric parallax information, to directly determine its physical radius to be 0.299 ± 0.010 R_☉. Literature photometry data are used to perform spectral energy distribution fitting in order to determine GJ 581s effective surface temperature T_(EFF) = 3498 ± 56 K and its luminosity L = 0.01205 ± 0.00024 L_☉. From these measurements, we recompute the location and extent of the systems habitable zone and conclude that two of the planets orbiting GJ 581, planets d and g, spend all or part of their orbit within or just on the edge of the habitable zone.


The Astrophysical Journal | 1993

The IRC + 10216 circumstellar envelope. III: Infrared molecular line profiles

J. J. Keady; Stephen T. Ridgway

The 10 μm spectrum (780-1240 cm −1 ) has been surveyed with a resolution of 0.009 cm −1 . Numerous molecular vibration-rotation transitions were detected in absorption by the circumstellar shell. Analysis of the line profiles by means of spectral synthesis from models revealed radial abundance ratio variations in some species. SiO is approximately uniformly mixed through the inner shell. SiH 4 and NH 3 are apparently produced in the region 10 to 40 R * , possibly by formation on grains. CS is very strongly depleted in the region 100-1000 R * , perhaps onto grains. From nondetection of H 2 the current mass-loss rate is constrained to be less than 4×10 −5 M ○. yr −1


The Astrophysical Journal | 2012

The GJ 436 System: Directly Determined Astrophysical Parameters of an M Dwarf and Implications for the Transiting Hot Neptune

Kaspar von Braun; Tabetha S. Boyajian; Stephen R. Kane; L. Hebb; Gerard T. van Belle; C. Farrington; David R. Ciardi; Heather A. Knutson; Theo A. ten Brummelaar; Mercedes Lopez-Morales; Harold A. McAlister; Gail H. Schaefer; Stephen T. Ridgway; Andrew Collier Cameron; P. J. Goldfinger; Nils H. Turner; Laszlo Sturmann; J. Sturmann

The late-type dwarf GJ 436 is known to host a transiting Neptune-mass planet in a 2.6 day orbit. We present results of our interferometric measurements to directly determine the stellar diameter (R_* = 0.455 ± 0.018 R_☉) and effective temperature (T_(EFF) = 3416 ± 54 K). We combine our stellar parameters with literature time-series data, which allows us to calculate physical and orbital system parameters, including GJ 436s stellar mass (M_* = 0.507^(+0.071)_(– 0.062) M_☉), stellar density (ρ_* = 5.37^(+0.30)_(–0.27) ρ_☉), planetary radius (R_p = 0.369^(+0.015)_(–0.015)R _(Jupiter)), and planetary mass (M_p = 0.078^(+0.007)_(–0.008) M_(Jupiter)), implying a mean planetary density of ρ_p = 1.55^(+0.12)_(–0.10) ρ_(Jupiter). These values are generally in good agreement with previous literature estimates based on assumed stellar mass and photometric light curve fitting. Finally, we examine the expected phase curves of the hot Neptune GJ 436b, based on various assumptions concerning the efficiency of energy redistribution in the planetary atmosphere, and find that it could be constrained with Spitzer monitoring observations.


Astronomy and Astrophysics | 2009

The close circumstellar environment of Betelgeuse. Adaptive optics spectro-imaging in the near-IR with VLT/NACO

P. Kervella; T. Verhoelst; Stephen T. Ridgway; G. Perrin; Sylvestre Lacour; Jan Cami; Xavier Haubois

Context. Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infrared observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims. Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods. We obtained AO images with the VLT/NACO instrument, taking advantage of the “cube” mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a “lucky imaging” approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04−2.17 μm in 10 narrow-band filters. Results. In all filters, the photosphere of Betelgeuse appears partly resolved. We identify an asymmetric envelope around the star, with in particular a relatively bright “plume” extending in the southwestern quadrant up to a radius of approximately six times the photosphere. The CN molecule provides an excellent match to the 1.09 μm bandhead in absorption in front of the stellar photosphere, but the emission spectrum of the plume is more difficult to interpret. Conclusions. Our AO images show that the envelope surrounding Betelgeuse has a complex and irregular structure. We propose that the southwestern plume is linked either to the presence of a convective hot spot on the photosphere, or to the rotation of the star.

Collaboration


Dive into the Stephen T. Ridgway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils H. Turner

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

C. Farrington

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge