Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Haney is active.

Publication


Featured researches published by Steven J. Haney.


Optics Letters | 1991

Diffraction-limited soft-x-ray projection imaging using a laser plasma source

Daniel A. Tichenor; Glenn D. Kubiak; Michael E. Malinowski; Richard H. Stulen; Steven J. Haney; Kurt W. Berger; L. A. Brown; R. R. Freeman; W. M. Mansfield; O. R. Wood; D. M. Tennant; J. E. Bjorkholm; Alastair A. MacDowell; Jeffrey Bokor; Tanya E. Jewell; Donald Lawrence White; D. L. Windt; W. K. Waskiewicz

Projection imaging of 0.1-microm lines and spaces is demonstrated with a Mo/Si multilayer coated Schwarzschild objective and 14-nm illumination from a laser plasma source. This structure has been etched into a silicon wafer by using a trilevel resist and reactive ion etching. Low-contrast modulation at 0.05-microm lines and spaces is observed in polymethylmethacrylate.


Applied Optics | 1993

Prototype high-speed tape target transport for a laser plasma soft-x-ray projection lithography source

Steven J. Haney; Kurt W. Berger; Glenn D. Kubiak; Paul D. Rockett; John A. Hunter

A prototype high-speed tape target transport is constructed for use in a high-repetition-rate laser plasma source. To reduce plasma debris, a 1000-5000-A-thick film of target material is supported by thin Mylar tape backing. Tape is transported to the laser focal volume at a maximum velocity of 356 cm/s, a rate sufficient to accommodate laser repetition rates of 1 kHz. The transport is fully vacuum compatible and can be retracted and then isolated from the laser plasma vacuum enclosure during tape reel replacement. The operating characteristics of the transport are described.


Journal of Vacuum Science & Technology B | 1991

Diffraction‐limited soft x‐ray projection lithography with a laser plasma source

Glenn D. Kubiak; Daniel A. Tichenor; Michael E. Malinowski; Richard H. Stulen; Steven J. Haney; Kurt W. Berger; L. A. Brown; J. E. Bjorkholm; R. R. Freeman; W. M. Mansfield; D. M. Tennant; O. R. Wood; Jeffrey Bokor; Tanya E. Jewell; Donald Lawrence White; D. L. Windt; W. K. Waskiewicz

A laser plasma source of extreme ultraviolet and soft x‐ray radiation has been used to print diffraction‐limited features using soft x‐ray projection lithography. A spherical condenser optic, a Si/Ge transmissive mask and a Mo/Si multilayer‐coated Schwarzschild objective having 20:1 reduction ratio were employed to pattern selected single‐layer and trilevel resists. At a numerical aperture of 0.12, a 0.1‐μm line and space pattern is clearly delineated and weak modulation is observed for the analogous 0.05‐μm pattern.


Applied Optics | 1993

Soft-x-ray projection lithography experiments using Schwarzschild imaging optics

Daniel A. Tichenor; Glenn D. Kubiak; Michael E. Malinowski; Richard H. Stulen; Steven J. Haney; Kurt W. Berger; L. A. Brown; William C. Sweatt; J. E. Bjorkholm; R. R. Freeman; Marc D. Himel; Alastair A. MacDowell; D. M. Tennant; O. R. Wood; Jeffrey Bokor; Tanya E. Jewell; W. M. Mansfield; W. K. Waskiewicz; Donald Lawrence White; D. L. Windt

Soft-x-ray projection imaging is demonstrated by the use of 14-nm radiation from a laser plasma source and a single-surface multilayer-coated ellipsoidal condenser. Aberrations in the condenser and the Schwarzschild imaging objective are characterized and correlated with imaging performance. A new Schwarzschild housing, designed for improved alignment stability, is described.


26th Annual International Symposium on Microlithography | 2001

First environmental data from the EUV engineering test stand

Leonard E. Klebanoff; Michael E. Malinowski; Philip A. Grunow; W. Miles Clift; Chip Steinhaus; Alvin H. Leung; Steven J. Haney

The first environmental data from the Engineering Test Stand (ETS) has been collected. Excellent control of high-mass hydrocarbons has been observed. This control is a result of extensive outgas testing of components and materials, vacuum compatible design of the ETS, careful cleaning of parts and pre-baking of cables and sub assemblies where possible, and clean assembly procedures. As a result of the hydrocarbon control, the residual ETS vacuum environment is rich in water vapor. Analysis of witness plate data indicates that the ETS environment does not pose a contamination risk to the optics in the absence of EUV irradiation. However, with EUV exposure, the water rich environment can lead to EUV- induced water oxidation of the Si-terminated Mo/Si optics. Added ethanol can prevent optic oxidation, allowing carbon growth via EUV cracking of low-level residual hydrocarbons to occur. The EUV environmental issues are understood, mitigation approaches have been validated, and EUV optic contamination appears to be manageable.


Emerging Lithographic Technologies VII | 2003

Lithographic characterization of improved projection optics in the EUVL engineering test stand

Donna J. O'Connell; Sang Hun Lee; William P. Ballard; Daniel A. Tichenor; Louis J. Bernardez; Steven J. Haney; Terry A. Johnson; Pamela K. Barr; Alvin H. Leung; Karen L. Jefferson; William C. Replogle; John E. M. Goldsmith; Henry N. Chapman; Patrick P. Naulleau; Stefan Wurm; Eric M. Panning

Static and scanned images of 100nm dense features for a developmental set of l/14 optics (projection optics box # 1, POB 1) in the Engineering Test Stand (ETS) were successfully obtained with various LPP source powers last year. The ETS with POB1 has been used to understand initial system performance and lithographic learning. Since then, numerous system upgrades have been made to improve ETS lithographic performance to meet or exceed the original design objectives. The most important upgrade is the replacement of POB 1 with an improved projection optics system, POB2, having lower figure error (l/20 rms wavefront error) and lower flare. Both projection optics boxes are a four-mirror design with a 0.1 numerical aperture. Scanned 70-nm dense features have been successfully printed using POB2. Aerial image contrast measurements have been made using the resist clearing method. The results are in good agreement to previous POB2 aerial image contrast measurements at the subfield exposure station (SES) at Lawrence Berkeley National Laboratory. For small features the results deviate from the modeling predictions due to the inherent resolution limit of the resist. The intrinsic flare of POB2 was also characterized. The experimental results were in excellent agreement with modeling predictions. As predicted, the flare in POB2 is less than 20% for 2μm features, which is two times lower than the flare in POB1. EUV flare is much easier to compensate for than its DUV counterpart due to its greater degree of uniformity and predictability. The lithographic learning obtained from the ETS will be used in the development of EUV High Volume Manufacturing tools. This paper describes the ETS tool ETS tool setup, both static and scanned, that was required after the installation of POB2. The paper will also describe the lithographic characterization of POB2 in the ETS and cmpare those results to the lithographic results obtained last year with POB1.


Emerging Lithographic Technologies VII | 2003

System and process learning in a full-field, high-power EUVL alpha tool

William P. Ballard; Daniel A. Tichenor; Donna J. O'Connell; Luis J. Bernardez; Robert E. Lafon; Richard J. Anderson; Alvin H. Leung; Kenneth A. Williams; Steven J. Haney; Yon E. Perras; Karen L. Jefferson; Therese L. Porter; Daniel L. Knight; Pamela K. Barr; James L. Van De Vreugde; Richard H. Campiotti; Mark D. Zimmerman; Terry A. Johnson; Leonard E. Klebanoff; Philip A. Grunow; Samuel Graham; Dean A. Buchenauer; William C. Replogle; Tony G. Smith; John B. Wronosky; Joel R. Darnold; Kenneth L. Blaedel; Henry N. Chapman; John S. Taylor; Layton C. Hale

Full-field imaging with a developmental projection optic box (POB 1) was successfully demonstrated in the alpha tool Engineering Test Stand (ETS) last year. Since then, numerous improvements, including laser power for the laser-produced plasma (LPP) source, stages, sensors, and control system have been made. The LPP has been upgraded from the 40 W LPP cluster jet source used for initial demonstration of full-field imaging to a high-power (1500 W) LPP source with a liquid Xe spray jet. Scanned lithography at various laser drive powers of >500 W has been demonstrated with virtually identical lithographic performance.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Lithographic evaluation of the EUV engineering test stand

Sang Hun Lee; Daniel A. Tichenor; William P. Ballard; Luis J. Bernardez; John E. M. Goldsmith; Steven J. Haney; Karen L. Jefferson; Terry A. Johnson; Alvin H. Leung; Donna J. O'Connell; William C. Replogle; John B. Wronosky; Kenneth L. Blaedel; Patrick P. Naulleau; Kenneth A. Goldberg; Eric M. Gullikson; Henry N. Chapman; Stefan Wurm; Eric M. Panning; Pei-Yang Yan; Guojing Zhang; J. E. Bjorkholm; Glenn D. Kubiak; Donald W. Sweeney; David T. Attwood; Charles W. Gwyn

Static and scanned images of 100 nm dense features were successfully obtained with a developmental set of projection optics and a 500W drive laser laser-produced-plasma (LPP) source in the Engineering Test Stand (ETS). The ETS, configured with POB1, has been used to understand system performance and acquire lithographic learning which will be used in the development of EUV high volume manufacturing tools. The printed static images for dense features below 100 nm with the improved LPP source are comparable to those obtained with the low power LPP source, while the exposure time was decreased by more than 30x. Image quality comparisons between the static and scanned images with the improved LPP source are also presented. Lithographic evaluation of the ETS includes flare and contrast measurements. By using a resist clearing method, the flare and aerial image contrast of POB1 have been measured, and the results have been compared to analytical calculations and computer simulations.


23rd Annual International Symposium on Microlithography | 1998

Recent advances in the Sandia EUV 10x microstepper

John E. M. Goldsmith; Pamela K. Barr; Kurt W. Berger; Luis J. Bernardez; Gregory Frank Cardinale; Joel R. Darnold; Daniel R. Folk; Steven J. Haney; Craig C. Henderson; Karen J. Jefferson; Kevin D. Krenz; Glenn D. Kubiak; Rodney P. Nissen; Donna J. O'Connell; Yon E. Perras; Avijit K. Ray-Chaudhuri; Tony G. Smith; Richard H. Stulen; Daniel A. Tichenor; Alfred A. Ver Berkmoes; John B. Wronosky

The Sandia EUV 10x microstepper system is the result of an evolutionary development process, starting with a simple 20x system, progressing through an earlier 10x system, to the current system that has full microstepper capabilities. The 10x microstepper prints 400-micrometers -diameter fields at sub- 0.10-micrometers resolution. Upgrades include the replacement of the copper wire target with a pulsed xenon jet target, construction of an improved projection optics system, the addition of a dose monitor a d an aerial image monitor, and the addition of a graphical user interface to the system operation software. This paper provides an up-to-date report on the status of the microstepper.


Electron-Beam, X-Ray, and Ion-Beam Submicrometer Lithographies for Manufacturing IV | 1994

Development of a laboratory extreme-ultraviolet lithography tool

Daniel A. Tichenor; Glenn D. Kubiak; Michael E. Malinowski; Richard H. Stulen; Steven J. Haney; Kurt W. Berger; Rodney P. Nissen; G. A. Wilkerson; Phillip H. Paul; S. R. Birtola; P. S. Jin; Richard William Arling; Avijit K. Ray-Chaudhuri; William C. Sweatt; Weng W. Chow; J. E. Bjorkholm; R. R. Freeman; Marc D. Himel; Alastair A. MacDowell; D. M. Tennant; Linus A. Fetter; O. R. Wood; W. K. Waskiewicz; Donald Lawrence White; D. L. Windt; Tanya E. Jewell

The development of a laboratory EUV lithography tool based on a laser plasma source, a 10x Schwarzschild camera, and a magnetically levitated wafer stage is presented. Interferometric measurements of the camera aberrations are incorporated into physical-optics simulations to estimate the EUV imaging performance of the camera. Experimental results demonstrate the successful matching of five multilayer reflecting surfaces, coated to specification for a wide range of figure and incidence angle requirements. High-resolution, 10x-reduction images of a reflection mask are shown.

Collaboration


Dive into the Steven J. Haney's collaboration.

Top Co-Authors

Avatar

Daniel A. Tichenor

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Glenn D. Kubiak

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kurt W. Berger

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Richard H. Stulen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard E. Klebanoff

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge