Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Avijit K. Ray-Chaudhuri is active.

Publication


Featured researches published by Avijit K. Ray-Chaudhuri.


Lawrence Berkeley National Laboratory | 2001

System integration and performance of the EUV engineering test stand

Daniel A. Tichenor; Avijit K. Ray-Chaudhuri; William C. Replogle; Richard H. Stulen; Glenn D. Kubiak; Paul D. Rockett; Leonard E. Klebanoff; Karen L. Jefferson; Alvin H. Leung; John B. Wronosky; Layton C. Hale; Henry N. Chapman; John S. Taylor; James A. Folta; Claude Montcalm; Regina Soufli; Kenneth L. Blaedel; Gary E. Sommargren; Donald W. Sweeney; Patrick P. Naulleau; Kenneth A. Goldberg; Eric M. Gullikson; Jeffrey Bokor; Phillip J. Batson; David T. Attwood; Keith H. Jackson; Scott Daniel Hector; Charles W. Gwyn; Pei-Yang Yan; P. Yan

The Engineering Test Stand (ETS) is a developmental lithography tool designed to demonstrate full-field EUV imaging and provide data for commercial-tool development. In the first phase of integration, currently in progress, the ETS is configured using a developmental projection system, while fabrication of an improved projection system proceeds in parallel. The optics in the second projection system have been fabricated to tighter specifications for improved resolution and reduced flare. The projection system is a 4-mirror, 4x-reduction, ring-field design having a numeral aperture of 0.1, which supports 70 nm resolution at a k1 of 0.52. The illuminator produces 13.4 nm radiation from a laser-produced plasma, directs the radiation onto an arc-shaped field of view, and provides an effective fill factor at the pupil plane of 0.7. The ETS is designed for full-field images in step-and-scan mode using vacuum-compatible, magnetically levitated, scanning stages. This paper describes system performance observed during the first phase of integration, including static resist images of 100 nm isolated and dense features.


Journal of Vacuum Science & Technology B | 2001

First lithographic results from the extreme ultraviolet Engineering Test Stand

Henry N. Chapman; Avijit K. Ray-Chaudhuri; Daniel A. Tichenor; William C. Replogle; Richard H. Stulen; Glenn D. Kubiak; P. D. Rockett; Leonard E. Klebanoff; Donna O’Connell; Alvin H. Leung; Karen L. Jefferson; John B. Wronosky; John S. Taylor; Layton C. Hale; Kenneth L. Blaedel; Eberhard Spiller; Gary E. Sommargren; James A. Folta; Donald W. Sweeney; Eric M. Gullikson; Patrick P. Naulleau; Kenneth A. Goldberg; Jeffrey Bokor; David T. Attwood; U. Mickan; R. Hanzen; E. Panning; Pei-Yang Yan; Charles W. Gwyn; Sunggi Lee

The extreme ultraviolet (EUV) Engineering Test Stand (ETS) is a step-and-scan lithography tool that operates at a wavelength of 13.4 nm. It has been developed to demonstrate full-field EUV imaging and acquire system learning for equipment manufacturers to develop commercial tools. The initial integration of the tool is being carried out using a developmental set of projection optics, while a second, higher-quality, projection optics is being assembled and characterized in a parallel effort. We present here the first lithographic results from the ETS, which include both static and scanned resist images of 100 nm dense and isolated features throughout the ring field of the projection optics. Accurate lithographic models have been developed and compared with the experimental results.


Proceedings of SPIE, the International Society for Optical Engineering | 2000

Photoresist film thickness for extreme ultraviolet lithography

Paul M. Dentinger; Gregory Frank Cardinale; Craig C. Henderson; Aaron Fisher; Avijit K. Ray-Chaudhuri

The thickness of the photoresist directly impacts the etch stand off and may impact the number of defects in the spin- coated film. However, the maximum imaging layer thickness for extreme ultraviolet lithography (EUVL) is limited by absorption of the radiation. Attenuation in photoresist materials at relevant EUV wavelengths was calculated with atomic extinction coefficients provided from Henke et al. The calculations indicated that photoresist materials have an optical density (O.D.) of 4.0 micrometer-1 (base e) so that 100 nm thick imaging layers have approximately 67% transmission at 13.4 nm wavelength. Using Prolith/3DTM (Finle Technologies, Austin, TX) simulations of the effect of highly attenuating materials on sidewall slope were done and shown to be small. Imaging experiments were performed in a commercially-available DUV resist material on the 10 X II microstepper and with an improved EUV resist formulation. The imaging results agreed well with the calculations. Top down and cross-section images showed good sidewall profiles in 95 nm thick films at the nominal dose because over 68% of the energy was transmitted through the film. When the thickness of the film was increased, the dose was increased slightly to compensate for the absorption while good sidewall profiles and linearity were maintained. Photoresist thicknesses as high as 145 nm were imaged with a 35% increase in dose. Results are also shown for a single layer resist exposed at 175 nm thickness with only slight sidewall degradation. It is shown that the imaging layer thickness for 13.4 nm lithography is likely to be 120 +/- 15 nm. If 11.4 nm wavelength radiation is chosen for EUV lithography, it is shown that thicknesses of 170 nm is possible.


Journal of Vacuum Science & Technology B | 1999

Method for compensation of extreme-ultraviolet multilayer defects

Avijit K. Ray-Chaudhuri; Gregory Frank Cardinale; Aaron Fisher; Pei-Yang Yan; Donald W. Sweeney

We propose the use of optical proximity correction on absorber features to compensate for the effect of subresolution multilayer defects that would otherwise induce a critical error in linewidth. Initial experiments have been performed which validate this concept. Process window simulations quantify the practical limits of this technique.


Emerging lithographic technologies. Conference | 1999

Sub-100-nm lithographic imaging with an EUV 10x microstepper

John E. M. Goldsmith; Kurt W. Berger; Dan R. Bozman; Gregory Frank Cardinale; Daniel R. Folk; Craig C. Henderson; Donna J. O'Connell; Avijit K. Ray-Chaudhuri; Kenneth D. Stewart; Daniel A. Tichenor; Henry N. Chapman; Richard J. Gaughan; Russell M. Hudyma; Claude Montcalm; John S. Taylor; Jeffrey D. Williams; Kenneth A. Goldberg; Eric M. Gullikson; Patrick P. Naulleau; Jonathan L. Cobb

The capabilities of the EUV 10x microstepper have been substantially improved over the past year. The key enhancement was the development of a new projection optics system with reduced wavefront error, reduced flare, and increased numerical aperture. These optics and concomitant developments in EUV reticles and photoresists have enabled dramatic improvements in EUV imaging, illustrated by resolution of 70 nm dense lines and spaces (L/S). CD linearity has been demonstrated for dense L/S over the range 100 nm to 80 nm, both for the imaging layer and for subsequent pattern transfer. For a +/- 10 percent CD specification, we have demonstrated a process latitude of +/- micrometers depth of focus and 10 percent dose range for dense 100 nm L/S.


Emerging lithographic technologies. Conference | 1999

Thermal management of EUV lithography masks using low-expansion glass substrates

Steven E. Gianoulakis; Avijit K. Ray-Chaudhuri; Scott Daniel Hector

Lithographic masks must maintain dimensional stability during exposure in a wafer stepper. In extreme UV lithography, multilayer coatings are deposited on a flat mask, substrate to make the mask surface reflective at EUV wavelengths. About 40 percent of the incident EUV radiation is absorbed by the multilayer coatings causing a temperature rise. The choice of mask substrate material affects dimensional stability due to thermal expansion and/or deformation. Finite element modeling has ben used to investigate the proper choice of mask substrate material and to explore the efficacy of various thermal management strategies. This modeling indicates that significant machine design and engineering challenges are necessary in order to employ Si as a mask substrate. Even if these challenges can be met, the thermal expansion of Si is likely to be too large to meet overlay error budgets for lithography at ground rules beyond the 100 nm technology node. ULE - a single phase, fused silica glass doped with titania - has near zero thermal expansion at the temperatures where EUV lithography is performed. Due to its small coefficient of thermal expansion, ULE does not undergo appreciable instantaneous or transient thermal expansion that results in image placement error.


Journal of Vacuum Science & Technology B | 1995

Alignment of a multilayer‐coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing

Avijit K. Ray-Chaudhuri; W. Ng; F. Cerrina; Z. Tan; J. E. Bjorkholm; D. M. Tennant; S. J. Spector

Multilayer‐coated imaging systems for extreme ultraviolet (EUV) lithography at 13 nm represent a significant challenge for alignment and characterization. The standard practice of utilizing visible light interferometry fundamentally provides an incomplete picture since this technique fails to account for phase effects induced by the multilayer coating. Thus the development of optical techniques at the functional EUV wavelength is required. We present the development of two EUV optical tests based on Foucault and Ronchi techniques. These relatively simple techniques are extremely sensitive due to the factor of 50 reduction in wavelength. Both techniques were utilized to align a Mo–Si multilayer‐coated Schwarzschild camera. By varying the illumination wavelength, phase shift effects due to the interplay of multilayer coating and incident angle were uniquely detected.


International Symposium on Optical Science and Technology | 2001

Initial results from the EUV engineering test stand

Daniel A. Tichenor; Avijit K. Ray-Chaudhuri; Sang Hun Lee; Henry N. Chapman; William C. Replogle; Kurt W. Berger; Richard H. Stulen; Glenn D. Kubiak; Leonard E. Klebanoff; John B. Wronosky; Donna J. O'Connell; Alvin H. Leung; Karen J. Jefferson; William P. Ballard; Layton C. Hale; Kenneth L. Blaedel; John S. Taylor; James A. Folta; Regina Soufli; Gary E. Sommargren; Donald W. Sweeney; Patrick P. Naulleau; Kenneth A. Goldberg; Eric M. Gullikson; Jeffrey Bokor; David T. Attwood; Uwe Mickan; Ralph M. Hanzen; Eric M. Panning; Pei-Yang Yan

The Engineering Test Stand (ETS) is an EUV lithography tool designed to demonstrate full-field EUV imaging and provide data required to accelerate production-tool development. Early lithographic results and progress on continuing functional upgrades are presented and discussed. In the ETS a source of 13.4 nm radiation is provided by a laser plasma source in which a Nd:YAG laser beam is focused onto a xenon- cluster target. A condenser system, comprised of multilayer-coated and grazing incidence mirrors, collects the EUV radiation and directs it onto a reflecting reticle. The resulting EUV illumination at the reticle and pupil has been measured and meets requirements for acquisition of first images. Tool setup experiments have been completed using a developmental projection system with (lambda) /14 wavefront error (WFE), while the assembly and alignment of the final projection system with (lambda) /24 WFE progresses in parallel. These experiments included identification of best focus at the central field point and characterization of imaging performance in static imaging mode. A small amount of astigmatism was observed and corrected in situ, as is routinely done in advanced optical lithographic tools. Pitch and roll corrections were made to achieve focus throughout the arc-shaped field of view. Scan parameters were identified by printing dense features with varying amounts of magnification and skew correction. Through-focus scanned imaging results, showing 100 nm isolated and dense features, will be presented. Phase 2 implementation goals for the ETS will also be discussed.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Static microfield printing at the advanced light source with the ETS Set-2 optic

Patrick P. Naulleau; Kenneth A. Goldberg; Erik H. Anderson; David T. Attwood; Phillip J. Batson; Jeffrey Bokor; Paul Denham; Eric M. Gullikson; Bruce Harteneck; Brian Hoef; Keith H. Jackson; Deirdre L. Olynick; Senajith Rekawa; Farhad Salmassi; Kenneth L. Blaedel; Henry N. Chapman; Layton C. Hale; Regina Soufli; Donald W. Sweeney; John R. Taylor; Christopher C. Walton; Avijit K. Ray-Chaudhuri; Donna J. O'Connell; Richard H. Stulen; Daniel A. Tichenor; Charles W. Gwyn; Pei-Yang Yan; Guojing Zhang

While interferometry is routinely used for the characterization and alignment of lithographic optics, the ultimate performance metric for these optics is printing in photoresist. The comparison of lithographic imaging with that predicted from wavefront performance is also useful for verifying and improving the predictive power of wavefront metrology. To address these issues, static, small-field printing capabilities have been added to the EUV phase- shifting point diffraction interferometry implemented at the Advanced Light Source at Lawrence Berkeley National Laboratory. The combined system remains extremely flexible in that switching between interferometry and imaging modes can be accomplished in approximately two weeks.


24th Annual International Symposium on Microlithography, Society of Photo-Optical Instrumentation Engineers, Santa Clara, CA, March 14-19, 1999 | 1999

Low-defect reflective mask blanks for extreme Ultraviolet Lithography

Scott C. Burkhart; Charles Cerjan; Patrick A. Kearney; Paul B. Mirkarimi; Christopher C. Walton; Avijit K. Ray-Chaudhuri

EUVL is an emerging technology for fabrication of sub-100 nm feature sizes on silicon, following the SIA roadmap well into the 21st Century. The specific EUVL system described is a scanned, projection lithography system with a 4:1 reduction, using a laser plasma EUV source. The mask and all of the system optics are reflective, multilayer mirrors which function in the extreme UV at 13.4 nm wavelength. Since the masks are imaged to the wafer exposure plane, mask defects greater than 80 percent of the exposure plane CD will in many cases render the mask useless, whereas intervening optics can have defects which are not a printing problem. For the 100 nm node, we must reduce defects to less than 0.01/cm2 at 80 nm or larger to obtain acceptable mask production yields. We have succeeded in reducing the defects to less than 0.1/cm2 for defects larger than 130 nm detected by visible light inspection tools, however our program goal is to achieve 0.01/cm2 in the near future. More importantly though, we plan to have a detailed understanding of defect origination and the effect on multilayer growth in order to mitigate defects below the ion-beam multilayer deposition tool, details of the defect detection and characterization facility, and progress on defect printability modeling.

Collaboration


Dive into the Avijit K. Ray-Chaudhuri's collaboration.

Top Co-Authors

Avatar

Richard H. Stulen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Tichenor

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kevin D. Krenz

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Kurt W. Berger

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Donald W. Sweeney

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn D. Kubiak

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Michael P. Kanouff

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Aaron Fisher

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Eric M. Gullikson

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge