Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven J. Woolnough is active.

Publication


Featured researches published by Steven J. Woolnough.


Journal of Climate | 2000

The Relationship between Convection and Sea Surface Temperature on Intraseasonal Timescales

Steven J. Woolnough; Julia Slingo; Brian J. Hoskins

Abstract The relationship between tropical convection, surface fluxes, and sea surface temperature (SST) on intraseasonal timescales has been examined as part of an investigation of the possibility that the intraseasonal oscillation is a coupled atmosphere–ocean phenomenon. The unique feature of this study is that 15 yr of data and the whole region from the Indian Ocean to the Pacific Ocean have been analyzed using lag-correlation analysis and compositing techniques. A coherent relationship between convection, surface fluxes, and SST has been found on intraseasonal timescales in the Indian Ocean, Maritime Continent, and west Pacific regions of the Tropics. Prior to the maximum in convection, there are positive shortwave and latent heat flux anomalies into the surface, followed by warm SST anomalies about 10 days before the convective maximum. Coincident with the convective maximum, there is a minimum in the shortwave flux, followed by a cooling due to increased evaporation associated with enhanced westerl...


Journal of Climate | 2009

MJO Simulation Diagnostics

Duane E. Waliser; Kenneth R. Sperber; Harry H. Hendon; Daehyun Kim; Eric D. Maloney; Matthew C. Wheeler; Klaus M. Weickmann; Chidong Zhang; Leo J. Donner; J. Gottschalck; Wayne Higgins; I-S Kang; D. Legler; Mitchell W. Moncrieff; Siegfried D. Schubert; W Stern; F. Vitart; Bin Wang; Wanqiu Wang; Steven J. Woolnough

The Madden–Julian oscillation (MJO) interacts with and influences a wide range of weather and climate phenomena (e.g., monsoons, ENSO, tropical storms, midlatitude weather), and represents an important, and as yet unexploited, source of predictability at the subseasonal time scale. Despite the important role of the MJO in climate and weather systems, current global circulation models (GCMs) exhibit considerable shortcomings in representing this phenomenon. These shortcomings have been documented in a number of multimodel comparison studies over the last decade. However, diagnosis of model performance has been challenging, and model progress has been difficult to track, because of the lack of a coherent and standardized set of MJO diagnostics. One of the chief objectives of the U.S. Climate Variability and Predictability (CLIVAR) MJO Working Group is the development of observation-based diagnostics for objectively evaluating global model simulations of the MJO in a consistent framework. Motivation for this activity is reviewed, and the intent and justification for a set of diagnostics is provided, along with specification for their calculation, and illustrations of their application. The diagnostics range from relatively simple analyses of variance and correlation to more sophisticated space–time spectral and empirical orthogonal function analyses. These diagnostic techniques are used to detect MJO signals, to construct composite life cycles, to identify associations of MJO activity with the mean state, and to describe interannual variability of the MJO.


Journal of Geophysical Research | 2015

Vertical structure and physical processes of the Madden-Julian Oscillation: Exploring key model physics in climate simulations

Xianan Jiang; Duane E. Waliser; Prince K. Xavier; Jon Petch; Nicholas P. Klingaman; Steven J. Woolnough; Bin Guan; Gilles Bellon; Traute Crueger; Charlotte A. DeMott; Cecile Hannay; Hai Lin; Wenting Hu; Daehyun Kim; Cara-Lyn Lappen; Mong-Ming Lu; Hsi-Yen Ma; Tomoki Miyakawa; James A. Ridout; Siegfried D. Schubert; J. F. Scinocca; Kyong-Hwan Seo; Eiki Shindo; Xiaoliang Song; Cristiana Stan; Wan-Ling Tseng; Wanqiu Wang; Tongwen Wu; Xiaoqing Wu; Klaus Wyser

Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.


Bulletin of the American Meteorological Society | 2017

The Sub-seasonal to Seasonal Prediction (S2S) Project Database

F. Vitart; C. Ardilouze; A. Bonet; A. Brookshaw; M. Chen; C. Codorean; M. Déqué; L. Ferranti; E. Fucile; M. Fuentes; Harry H. Hendon; J. Hodgson; H.-S. Kang; Arun Kumar; Hai Lin; G. Liu; X. Liu; P. Malguzzi; I. Mallas; M. Manoussakis; D. Mastrangelo; Craig MacLachlan; P. McLean; A. Minami; R. Mladek; T. Nakazawa; S. Najm; Y. Nie; M. Rixen; A. W. Robertson

AbstractDemands are growing rapidly in the operational prediction and applications communities for forecasts that fill the gap between medium-range weather and long-range or seasonal forecasts. Based on the potential for improved forecast skill at the subseasonal to seasonal time range, the Subseasonal to Seasonal (S2S) Prediction research project has been established by the World Weather Research Programme/World Climate Research Programme. A main deliverable of this project is the establishment of an extensive database containing subseasonal (up to 60 days) forecasts, 3 weeks behind real time, and reforecasts from 11 operational centers, modeled in part on the The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database for medium-range forecasts (up to 15 days).The S2S database, available to the research community since May 2015, represents an important tool to advance our understanding of the subseasonal to seasonal time range that has been co...


Reviews of Geophysics | 2015

Atmosphere‐ocean coupled processes in the Madden‐Julian oscillation

Charlotte A. DeMott; Nicholas P. Klingaman; Steven J. Woolnough

The Madden-Julian oscillation (MJO) is a convectively coupled 30–70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understanding of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere-upper ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper ocean mixing in coupled model simulations, designing model experiments that minimize mean state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.


Journal of the Atmospheric Sciences | 2013

The Effects of Explicit versus Parameterized Convection on the MJO in a Large-Domain High-Resolution Tropical Case Study. Part I: Characterization of Large-Scale Organization and Propagation*

Christopher E. Holloway; Steven J. Woolnough; Grenville M. S. Lister

AbstractHigh-resolution simulations over a large tropical domain (~20°S–20°N, 42°E–180°) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden–Julian oscillation (MJO) event. The parameterized convection model simulations at both 40- and 12-km grid spacing have a very weak MJO signal and little eastward propagation. A 4-km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. Explicit convection simulations at 12 km also perform much better than the 12-km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4-km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing...


Climate Dynamics | 2014

Development of warm SST errors in the southern tropical Atlantic in CMIP5 decadal hindcasts

Thomas Toniazzo; Steven J. Woolnough

SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.


Journal of Geophysical Research | 2015

Vertical structure and physical processes of the Madden‐Julian oscillation: Synthesis and summary

Nicholas P. Klingaman; Xianan Jiang; Prince K. Xavier; Jon Petch; Duane E. Waliser; Steven J. Woolnough

The “Vertical structure and physical processes of the Madden-Julian oscillation (MJO)” project comprises three experiments, designed to evaluate comprehensively the heating, moistening, and momentum associated with tropical convection in general circulation models (GCMs). We consider here only those GCMs that performed all experiments. Some models display relatively higher or lower MJO fidelity in both initialized hindcasts and climate simulations, while others show considerable variations in fidelity between experiments. Fidelity in hindcasts and climate simulations are not meaningfully correlated. The analysis of each experiment led to the development of process-oriented diagnostics, some of which distinguished between GCMs with higher or lower fidelity in that experiment. We select the most discriminating diagnostics and apply them to data from all experiments, where possible, to determine if correlations with MJO fidelity hold across scales and GCM states. While normalized gross moist stability had a small but statistically significant correlation with MJO fidelity in climate simulations, we find no link with fidelity in medium-range hindcasts. Similarly, there is no association between time step to time step rainfall variability, identified from short hindcasts and fidelity in medium-range hindcasts or climate simulations. Two metrics that relate precipitation to free-tropospheric moisture—the relative humidity for extreme daily precipitation and variations in the height and amplitude of moistening with rain rate—successfully distinguish between higher-fidelity and lower fidelity GCMs in hindcasts and climate simulations. To improve the MJO, developers should focus on relationships between convection and both total moisture and its rate of change. We conclude by offering recommendations for further experiments.


Climate Dynamics | 2016

The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM

Stephanie J. Johnson; Richard C. Levine; Andrew G. Turner; Gill Martin; Steven J. Woolnough; Reinhard Schiemann; Matthew S. Mizielinski; Malcolm J. Roberts; Pier Luigi Vidale; Marie-Estelle Demory; Jane Strachan

The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200–40 km at the equator (N96–N512, 1.9°–0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.


Journal of Advances in Modeling Earth Systems | 2015

Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

C. L. Daleu; R. S. Plant; Steven J. Woolnough; Sharon L. Sessions; Michael J. Herman; Adam L Sobel; Shu Wang; Daehyun Kim; Arthur Cheng; Gilles Bellon; Philippe Peyrillé; Finola Ferry; Pier Siebesma; L.H. van Ulft

Abstract As part of an international intercomparison project, a set of single‐column models (SCMs) and cloud‐resolving models (CRMs) are run under the weak‐temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative‐convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large‐scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.

Collaboration


Dive into the Steven J. Woolnough's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Duane E. Waliser

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daehyun Kim

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Xianan Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Vitart

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Researchain Logo
Decentralizing Knowledge