Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. S. Plant is active.

Publication


Featured researches published by R. S. Plant.


Journal of the Atmospheric Sciences | 2008

A stochastic parameterization for deep convection based on equilibrium statistics

R. S. Plant; George C. Craig

A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (PDF) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the PDF is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain–Fritsch parameterization. Initial tests in the single-column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.


Nuclear Physics | 1998

Meson properties in an extended non-local NJL model

R. S. Plant; Michael C. Birse

We consider a non-local version of the NJL model, based on a separable quark-quark interaction. The interaction is extended to include terms that bind vector and axial-vector mesons. The non-locality means that no further regulator is required. Moreover the model is able to confine the quarks by generating a quark propagator without poles at real energies. Working in the ladder approximation, we calculate amplitudes in Euclidean space and discuss features of their continuation to Minkowski energies. Conserved currents are constructed and we demonstrate their consistency with various Ward identities. Various meson masses are calculated, along with their strong and electromagnetic decay amplitudes. We also calculate the electromagnetic form factor of the pion, as well as form factors associated with the processes γγ* → π0 and ω → π0γ*. The results are found to lead to a satisfactory phenomenology and lend some dynamical support to the idea of vector-meson dominance.


Journal of Applied Meteorology | 2001

Numerical Modeling of the Propagation Environment in the Atmospheric Boundary Layer over the Persian Gulf

B. W. Atkinson; J.G. Li; R. S. Plant

Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/ Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land‐sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging.


Journal of Advances in Modeling Earth Systems | 2015

Intercomparison of methods of coupling between convection and large-scale circulation. 1. Comparison over uniform surface conditions

C. L. Daleu; R. S. Plant; Steven J. Woolnough; Sharon L. Sessions; Michael J. Herman; Adam L Sobel; Shu Wang; Daehyun Kim; Arthur Cheng; Gilles Bellon; Philippe Peyrillé; Finola Ferry; Pier Siebesma; L.H. van Ulft

Abstract As part of an international intercomparison project, a set of single‐column models (SCMs) and cloud‐resolving models (CRMs) are run under the weak‐temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative‐convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistent implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large‐scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.


Bulletin of the American Meteorological Society | 2015

Cloud Banding and Winds in Intense European Cyclones: Results from the DIAMET Project

G. Vaughan; John Methven; Daniel C. Anderson; Bogdan Antonescu; Laura Baker; T. P. Baker; Sue P. Ballard; Keith N. Bower; P. R. A. Brown; Jeffrey M. Chagnon; T. W. Choularton; J. Chylik; Paul Connolly; Peter A. Cook; Richard Cotton; J. Crosier; Christopher Dearden; J. R. Dorsey; Thomas H. A. Frame; Martin Gallagher; Michael Goodliff; Suzanne L. Gray; Ben Harvey; Peter Knippertz; Humphrey W. Lean; D. Li; Gary Lloyd; O. Martinez Alvarado; John Nicol; Jesse Norris

AbstractThe Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) project aims to improve forecasts of high-impact weather in extratropical cyclones through field measurements, high-resolution numerical modeling, and improved design of ensemble forecasting and data assimilation systems. This article introduces DIAMET and presents some of the first results. Four field campaigns were conducted by the project, one of which, in late 2011, coincided with an exceptionally stormy period marked by an unusually strong, zonal North Atlantic jet stream and a succession of severe windstorms in northwest Europe. As a result, December 2011 had the highest monthly North Atlantic Oscillation index (2.52) of any December in the last 60 years. Detailed observations of several of these storms were gathered using the U.K.’s BAe 146 research aircraft and extensive ground-based measurements. As an example of the results obtained during the campaign, observations are presented of Extratropical Cyclone Fri...


Bulletin of the American Meteorological Society | 2015

The DYMECS Project: A Statistical Approach for the Evaluation of Convective Storms in High-Resolution NWP Models

Thorwald H. M. Stein; Robin J. Hogan; Peter A. Clark; Carol Halliwell; Kirsty E. Hanley; Humphrey W. Lean; John Nicol; R. S. Plant

Abstract A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, the authors have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. They have related these structures to storm life cycles derived by tracking features in the rainfall from the U.K. radar network and compared them statistically to storm structures in the Met Office model, which they ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. T...


Monthly Weather Review | 2014

Distinguishing the Cold Conveyor Belt and Sting Jet Airstreams in an Intense Extratropical Cyclone

Oscar Martinez-Alvarado; Laura Baker; Suzanne L. Gray; John Methven; R. S. Plant

AbstractStrong winds equatorward and rearward of a cyclone core have often been associated with two phenomena: the cold conveyor belt (CCB) jet and sting jets. Here, detailed observations of the mesoscale structure in this region of an intense cyclone are analyzed. The in situ and dropsonde observations were obtained during two research flights through the cyclone during the Diabatic Influences on Mesoscale Structures in Extratropical Storms (DIAMET) field campaign. A numerical weather prediction model is used to link the strong wind regions with three types of “airstreams” or coherent ensembles of trajectories: two types are identified with the CCB, hooking around the cyclone center, while the third is identified with a sting jet, descending from the cloud head to the west of the cyclone. Chemical tracer observations show for the first time that the CCB and sting jet airstreams are distinct air masses even when the associated low-level wind maxima are not spatially distinct. In the model, the CCB experie...


Journal of the Atmospheric Sciences | 2012

Cloud-Resolving Model Simulations with One- and Two-Way Couplings via the Weak Temperature Gradient Approximation

Chimene L. Daleu; Steven J. Woolnough; R. S. Plant

A cloud-resolving model is modified to implement the weak temperature gradient approximation in order to simulate the interactions between tropical convection and the large-scale tropical circulation. The instantaneous domain-mean potential temperature is relaxed toward a reference profile obtained from a radiative‐convective equilibrium simulation of the cloud-resolving model. For homogeneous surface conditions, the model state at equilibrium is a large-scale circulation with its descending branch in the simulated column. This is similar to the equilibrium state found in some other studies, but not all. For this model, the development of such a circulation is insensitive to the relaxation profile and the initial conditions. Two columns of the cloud-resolving model are fully coupled by relaxing the instantaneous domain-mean potential temperature in both columns toward each other. This configuration is energetically closed in contrast to the reference-column configuration. No mean large-scale circulation develops over homogeneous surface conditions, regardless of the relative area of the two columns. The sensitivity to nonuniform surface conditions is similar to that obtainedin the reference-column configuration if the twosimulated columnshave very different areas, but it is markedly weaker for columns of comparable area. The weaker sensitivity can be understood as being a consequence of a formulation for which the energy budget is closed. The referencecolumn configuration has been used to study the convection in a local region under the influence of a largescale circulation. The extension to a two-column configuration is proposed as a methodology for studying the influence on local convection of changes in remote convection.


Journal of the Atmospheric Sciences | 2007

Numerical Simulation of Baroclinic Waves with a Parameterized Boundary Layer

R. S. Plant; Stephen E. Belcher

A dry three-dimensional baroclinic life cycle model is used to investigate the role of turbulent fluxes of heat and momentum within the boundary layer on midlatitude cyclones. Simulations are performed of life cycles for two basic states: with and without turbulent fluxes. The different basic states produce cyclones with contrasting frontal and mesoscale flow structures. The analysis focuses on the generation of potential vorticity (PV) in the boundary layer and its subsequent transport into the free troposphere. The dynamic mechanism through which friction mitigates a barotropic vortex is that of Ekman pumping. This has often been assumed to also be the dominant mechanism for baroclinic developments. The PV framework highlights an additional, baroclinic mechanism. Positive PV is generated baroclinically due to friction to the northeast of a surface low and is transported out of the boundary layer by a cyclonic conveyor belt flow. The result is an anomaly of increased static stability in the lower troposphere, which restricts the growth of the baroclinic wave. The reduced coupling between lower and upper levels can be sufficient to change the character of the upper-level evolution of the mature wave. The basic features of the baroclinic damping mechanism are robust for different frontal structures, with and without turbulent heat fluxes, and for the range of surface roughness found over the oceans.


Nuclear Physics | 2002

Mesonic fluctuations in a nonlocal Nambu–Jona-Lasinio model

R. S. Plant; Michael C. Birse

Abstract The effects of meson fluctuations are studied in a nonlocal generalization of the Nambu–Jona-Lasinio model, by including terms of next-to-leading order (NLO) in 1/ N c . In the model with only scalar and pseudoscalar interactions NLO contributions to the quark condensate are found to be very small. This is a result of cancellation between virtual mesons and Fock terms, which occurs for the parameter sets of most interest. In the quark self-energy, similar cancellations arise in the tadpole diagrams, although not in other NLO pieces which contribute at the ∼25% level. The effects on pion properties are also found to be small. NLO contributions from real ππ intermediate states increase the sigma-meson mass by ∼30%. In an extended model with vector and axial interactions, there are indications that NLO effects could be larger.

Collaboration


Dive into the R. S. Plant's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge