Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Mazur is active.

Publication


Featured researches published by Steven Mazur.


Journal of Immunology | 2011

Critical Modifier Role of Membrane-Cystic Fibrosis Transmembrane Conductance Regulator-Dependent Ceramide Signaling in Lung Injury and Emphysema

Manish Bodas; Taehong Min; Steven Mazur; Neeraj Vij

Ceramide accumulation mediates the pathogenesis of chronic obstructive lung diseases. Although an association between lack of cystic fibrosis transmembrane conductance regulator (CFTR) and ceramide accumulation has been described, it is unclear how membrane-CFTR may modulate ceramide signaling in lung injury and emphysema. Cftr+/+ and Cftr−/− mice and cells were used to evaluate the CFTR-dependent ceramide signaling in lung injury. Lung tissue from control and chronic obstructive pulmonary disease patients was used to verify the role of CFTR-dependent ceramide signaling in pathogenesis of chronic emphysema. Our data reveal that CFTR expression inversely correlates with severity of emphysema and ceramide accumulation in chronic obstructive pulmonary disease subjects compared with control subjects. We found that chemical inhibition of de novo ceramide synthesis controls Pseudomonas aeruginosa-LPS–induced lung injury in Cftr+/+ mice, whereas its efficacy was significantly lower in Cftr−/− mice, indicating that membrane-CFTR is required for controlling lipid-raft ceramide levels. Inhibition of membrane-ceramide release showed enhanced protective effect in controlling P. aeruginosa-LPS–induced lung injury in Cftr−/− mice compared with that in Cftr+/+ mice, confirming our observation that CFTR regulates lipid-raft ceramide levels and signaling. Our results indicate that inhibition of de novo ceramide synthesis may be effective in disease states with low CFTR expression like emphysema and chronic lung injury but not in complete absence of lipid-raft CFTR as in ΔF508-cystic fibrosis. In contrast, inhibiting membrane-ceramide release has the potential of a more effective drug candidate for ΔF508-cystic fibrosis but may not be effectual in treating lung injury and emphysema. Our data demonstrate the critical role of membrane-localized CFTR in regulating ceramide accumulation and inflammatory signaling in lung injury and emphysema.


Virology | 2015

Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease.

Reed F. Johnson; Laura E. Via; Mia R. Kumar; Joseph P. Cornish; Srikanth Yellayi; Louis Huzella; Elena Postnikova; Nicholas Oberlander; Christopher Bartos; Britini L. Ork; Steven Mazur; Cindy Allan; Jeffrey Solomon; Joshua C. Johnson; James Pickel; Lisa E. Hensley; Peter B. Jahrling

Abstract Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT), with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication.


Journal of Virology | 2015

Simian Hemorrhagic Fever Virus Cell Entry Is Dependent on CD163 and Uses a Clathrin-Mediated Endocytosis-Like Pathway

Yíngyún Caì; Elena Postnikova; John G. Bernbaum; Shuǐqìng Yú; Steven Mazur; Nicole Deiuliis; Sheli R. Radoshitzky; Matthew G. Lackemeyer; Adam McCluskey; Phillip J. Robinson; Volker Haucke; Victoria Wahl-Jensen; Adam L. Bailey; Michael Lauck; Thomas C. Friedrich; David H. O'Connor; Tony L. Goldberg; Peter B. Jahrling; Jens H. Kuhn

ABSTRACT Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFVs ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.


Antimicrobial Agents and Chemotherapy | 2015

Antiviral Potential of ERK/MAPK and PI3K/AKT/mTOR Signaling Modulation for Middle East Respiratory Syndrome Coronavirus Infection as Identified by Temporal Kinome Analysis

Jason Kindrachuk; Britini L. Ork; Brit J. Hart; Steven Mazur; Matthew B. Frieman; Dawn Traynor; Reed F. Johnson; Julie Dyall; Jens H. Kuhn; Gene G. Olinger; Lisa E. Hensley; Peter B. Jahrling

ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.


PLOS ONE | 2014

CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection.

Yíngyún Caì; Shul̆qı̀ng Yú; Elena Postnikova; Steven Mazur; John G. Bernbaum; Robin Burk; Téngfēi Zhāng; Sheli R. Radoshitzky; Marcel A. Müller; Ingo Jordan; Laura Bollinger; Lisa E. Hensley; Peter B. Jahrling; Jens H. Kuhn

Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.


Journal of Virology | 2015

Historical Outbreaks of Simian Hemorrhagic Fever in Captive Macaques Were Caused by Distinct Arteriviruses

Michael Lauck; S. V. Alkhovsky; Yīmíng Bào; Adam L. Bailey; Zinaida V. Shevtsova; Shchetinin Am; Tatyana V. Vishnevskaya; Matthew G. Lackemeyer; Elena Postnikova; Steven Mazur; Jiro Wada; Sheli R. Radoshitzky; Thomas C. Friedrich; B. A. Lapin; Deriabin Pg; Peter B. Jahrling; Tony L. Goldberg; David H. O'Connor; Jens H. Kuhn

ABSTRACT Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.


Journal of Virological Methods | 2015

Inactivation and safety testing of Middle East Respiratory Syndrome Coronavirus.

Mia R. Kumar; Steven Mazur; Britini L. Ork; Elena Postnikova; Lisa E. Hensley; Peter B. Jahrling; Reed F. Johnson

Abstract Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a recently emerged virus that has caused a number of human infections and deaths, primarily in the Middle East. The transmission of MERS-CoV to humans has been proposed to be as a result of contact with camels, but evidence of human-to-human transmission also exists. In order to work with MERS-CoV in a laboratory setting, the US Centers for Disease Control and Prevention (CDC) has determined that MERS-CoV should be handled at a biosafety level (BSL) 3 (BSL-3) biocontainment level. Many processes and procedures used to characterize MERS-CoV and to evaluate samples from MERS-CoV infected animals are more easily and efficiently completed at BSL-2 or lower containment. In order to complete experimental work at BSL-2, demonstration or proof of inactivation is required before removal of specimens from biocontainment laboratories. In the studies presented here, we evaluated typical means of inactivating viruses prior to handling specimens at a lower biocontainment level. We found that Trizol, AVL buffer and gamma irradiation were effective at inactivating MERS-CoV, that formaldehyde-based solutions required at least 30min of contact time in a cell culture system while a mixture of methanol and acetone required 60min to inactivate MERS-CoV. Together, these data provide a foundation for safely inactivating MERS-CoV, and potentially other coronaviruses, prior to removal from biocontainment facilities.


Journal of Virology | 2013

NONHUMAN TRANSFERRIN RECEPTOR 1 IS AN EFFICIENT CELL ENTRY RECEPTOR FOR OCOZOCOAUTLA DE ESPINOSA VIRUS

Yíngyún Caì; Shuĭqìng Yú; Steven Mazur; Lián Dŏng; Krisztina Janosko; Téngfēi Zhāng; Marcel A. Müller; Lisa E. Hensley; Sina Bavari; Peter B. Jahrling; Sheli R. Radoshitzky; Jens H. Kuhn

ABSTRACT Ocozocoautla de Espinosa virus (OCEV) is a novel, uncultured arenavirus. We found that the OCEV glycoprotein mediates entry into grivet and bat cells through transferrin receptor 1 (TfR1) binding but that OCEV glycoprotein precursor (GPC)-pseudotyped retroviruses poorly entered 53 human cancer cell lines. Interestingly, OCEV and Tacaribe virus could use bat, but not human, TfR1. Replacing three human TfR1 amino acids with their bat ortholog counterparts transformed human TfR1 into an efficient OCEV and Tacaribe virus receptor.


Respiratory Research | 2018

Inhibition of histone-deacetylase activity rescues inflammatory cystic fibrosis lung disease by modulating innate and adaptive immune responses

Manish Bodas; Steven Mazur; Taehong Min; Neeraj Vij

BackgroundChronic lung disease resulting from dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and NFκB-mediated neutrophilic-inflammation forms the basis of CF-related mortality. Here we aimed to evaluate if HDAC inhibition controls Pseudomonas-aeruginosa-lipopolysaccharide (Pa-LPS) induced airway inflammation and CF-lung disease.MethodsFor in vitro experiments, HEK293-cells were transfected with IL-8 or NFκB-firefly luciferase, and SV40-renilla- luciferase reporter constructs or ΔF508-CFTR-pCEP, followed by treatment with suberoylanilide hydroxamic acid (SAHA), Trichostatin-A (TSA) and/or TNFα. For murine studies, Cftr+/+ or Cftr−/− mice (n = 3) were injected/instilled with Pa-LPS and/or treated with SAHA or vehicle control. The progression of lung disease was monitored by quantifying changes in inflammatory markers (NFκB), cytokines (IL-6/IL-10), neutrophil activity (MPO, myeloperoxidase and/or NIMP-R14) and T-reg numbers.ResultsSAHA treatment significantly (p < 0.05) suppresses TNFα-induced NFκB and IL-8 reporter activities in HEK293-cells. Moreover, SAHA, Tubacin (selective HDAC6-inhibitor) or HDAC6-shRNAs controls CSE-induced ER-stress activities (p < 0.05). In addition, SAHA restores trafficking of misfolded-ΔF508-CFTR, by inducing protein levels of both B and C forms of CFTR. Murine studies using Cftr+/+ or Cftr−/− mice verified that SAHA controls Pa-LPS induced IL-6 levels, and neutrophil (MPO levels and/or NIMP-R14), NFκB-(inflammation) and Nrf2 (oxidative-stress marker) activities, while promoting FoxP3+ T-reg activity.ConclusionIn summary, SAHA-mediated HDAC inhibition modulates innate and adaptive immune responses involved in pathogenesis and progression of inflammatory CF-lung disease.


Mbio | 2016

Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques

Victoria Wahl-Jensen; Joshua C. Johnson; Michael Lauck; Jason T. Weinfurter; Louise H. Moncla; Andrea M. Weiler; Olivia K. Charlier; Oscar Rojas; Russell Byrum; Dan R. Ragland; Louis Huzella; Erika Zommer; Melanie Cohen; John G. Bernbaum; Yíngyún Caì; Hannah B. Sanford; Steven Mazur; Reed F. Johnson; Jing Qin; Gustavo Palacios; Adam L. Bailey; Peter B. Jahrling; Tony L. Goldberg; David H. O’Connor; Thomas C. Friedrich; Jens H. Kuhn

ABSTRACT Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. IMPORTANCE Outbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the family Arteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays. Outbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the family Arteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays.

Collaboration


Dive into the Steven Mazur's collaboration.

Top Co-Authors

Avatar

Peter B. Jahrling

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jens H. Kuhn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elena Postnikova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Hensley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Reed F. Johnson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sheli R. Radoshitzky

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Yíngyún Caì

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adam L. Bailey

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Manish Bodas

Central Michigan University

View shared research outputs
Top Co-Authors

Avatar

Michael Lauck

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge