Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven T. Haworth is active.

Publication


Featured researches published by Steven T. Haworth.


International Journal of Radiation Biology | 2009

10 GY TOTAL BODY IRRADIATION INCREASES RISK OF CORONARY SCLEROSIS, DEGENERATION OF HEART STRUCTURE AND FUNCTION IN A RAT MODEL

John E. Baker; Brian L. Fish; Jidong Su; Steven T. Haworth; Jennifer L. Strande; Richard A. Komorowski; Raymond Q. Migrino; Anil Doppalapudi; Leanne Harmann; X. Allen Li; J.W. Hopewell; John E. Moulder

Purpose: To determine the impact of 10 Gy total body irradiation (TBI) or local thorax irradiation, a dose relevant to a radiological terrorist threat, on lipid and liver profile, coronary microvasculature and ventricular function. Materials and methods: WAG/RijCmcr rats received 10 Gy TBI followed by bone marrow transplantation, or 10 Gy local thorax irradiation. Age-matched, non-irradiated rats served as controls. The lipid profile and liver enzymes, coronary vessel morphology, nitric oxide synthase (NOS) isoforms, protease activated receptor (PAR)-1 expression and fibrinogen levels were compared. Two-dimensional strain echocardiography assessed global radial and circumferential strain on the heart. Results: TBI resulted in a sustained increase in total and low density lipoprotein (LDL) cholesterol (190 ± 8 vs. 58 ± 6; 82 ± 8 vs. 13 ± 3 mg/dl, respectively). The density of small coronary arterioles was decreased by 32%. Histology revealed complete blockage of some vessels while cardiomyocytes remained normal. TBI resulted in cellular peri-arterial fibrosis whereas control hearts had symmetrical penetrating vessels with less collagen and fibroblasts. TBI resulted in a 32 ± 4% and 28 ± 3% decrease in endothelial NOS and inducible NOS protein, respectively, and a 21 ± 4% and 35 ± 5% increase in fibrinogen and PAR-1 protein respectively, after 120 days. TBI reduced radial strain (19 ± 8 vs. 46 ± 7%) and circumferential strain (−8 ± 3 vs. −15 ± 3%) compared to controls. Thorax-only irradiation produced no changes over the same time frame. Conclusions: TBI with 10 Gy, a dose relevant to radiological terrorist threats, worsened lipid profile, injured coronary microvasculature, altered endothelial physiology and myocardial mechanics. These changes were not manifest with local thorax irradiation. Non-thoracic circulating factors may be promoting radiation-induced injury to the heart.


Physics in Medicine and Biology | 1998

Feldkamp and circle-and-line cone-beam reconstruction for 3D micro-CT of vascular networks

Roger H. Johnson; Hui Hu; Steven T. Haworth; Paul S. Cho; Christopher A. Dawson; John H. Linehan

Detailed morphometric knowledge of the microvascular network is needed for studies relating structure to haemodynamic function in organs like the lung. Clinical volumetric CT is limited to millimetre-order spatial resolution. Since evidence suggests that small arterioles (50 to 300 micrometres) dominate pulmonary haemodynamics, we built a micro-CT scanner, capable of imaging excised lungs in 3D with 100 microm resolution, for basic physiology research. The scanner incorporates a micro-focal (3 microm) x-ray source, an xyz theta stage and a CCD-coupled image intensifier detector. We imaged phantoms and contrast-enhanced rat lungs, reconstructing the data with either the Feldkamp or the circle-and-line cone-beam reconstruction algorithm. We present reconstructions using 180 views over 360 degrees for the circular trajectory, augmented with views from a linear scan for the circle-and-line algorithm. Especially for platelike features perpendicular to the rotation axis and remote from the midplane, the circle-and-line algorithm produces superior reconstructions compared with Feldkamps algorithm. We conclude that the use of nonplanar source trajectories to perform micro-CT on contrast-enhanced, excised lungs can provide data useful for morphometric analysis of vascular trees, currently down to the 130 microm level.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Upregulation of vascular calcium channels in neonatal piglets with hypoxia-induced pulmonary hypertension

K Dinesh Hirenallur-S.; Steven T. Haworth; Jeaninne T. Leming; James Chang; Guillermo Hernandez; John B. Gordon; Nancy J. Rusch

Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets exposed to chronic hypoxia (CH) developed PAH by 21 days, which was evident as a 2.1-fold increase in pulmonary vascular resistance in vivo compared with piglets raised in normoxia (N). Transpulmonary pressures (DeltaPtp) in the corresponding isolated perfused lungs were 20.5 +/- 2.1 mmHg (CH) and 11.6 +/- 0.8 mmHg (N). Nifedipine reduced the elevated DeltaPtp in isolated lungs of CH piglets by 6.4 +/- 1.3 mmHg but only reduced DeltaPtp in lungs of N piglets by 1.9 +/- 0.2 mmHg. Small pulmonary arteries from CH piglets also demonstrated accentuated Ca(2+)-dependent contraction, and Ca(2+) channel current was 3.94-fold higher in the resident vascular muscle cells. Finally, although the level of mRNA encoding the pore-forming alpha(1C)-subunit of the Ca(L) channel was similar between small pulmonary arteries from N and CH piglets, a profound and persistent upregulation of the vascular alpha(1C) protein was detected by 10 days in CH piglets at a time when pulmonary vascular resistance was only mildly elevated. Thus chronic hypoxia in the neonate is associated with the anomalous upregulation of Ca(L) channels in small pulmonary arteries in vivo and the resulting abnormal Ca(2+)-dependent resistance may contribute to the pathogenesis of PAH.


The Journal of Nuclear Medicine | 2012

Differential Lung Uptake of 99mTc-Hexamethylpropyleneamine Oxime and 99mTc-Duramycin in the Chronic Hyperoxia Rat Model

Anne V. Clough; Said H. Audi; Steven T. Haworth; David L. Roerig

Noninvasive radionuclide imaging has the potential to identify and assess mechanisms involved in particular stages of lung injury that occur with acute respiratory distress syndrome, for example. Lung uptake of 99mTc-hexamethylpropyleneamine oxime (HMPAO) is reported to be partially dependent on the redox status of the lung tissue whereas 99mTc-duramycin, a new marker of cell injury, senses cell death via apoptosis or necrosis. Thus, we investigated changes in lung uptake of these agents in rats exposed to hyperoxia for prolonged periods, a common model of acute lung injury. Methods: Male Sprague–Dawley rats were preexposed to either normoxia (21% O2) or hyperoxia (85% O2) for up to 21 d. For imaging, the rats were anesthetized and injected intravenously with either 99mTc-HMPAO or 99mTc-duramycin (both 37–74 MBq), and planar images were acquired using a high-sensitivity modular γ-camera. Subsequently, 99mTc-macroagreggated albumin (37 MBq, diameter 10–40 μm) was injected intravenously, imaged, and used to define a lung region of interest. The lung-to-background ratio was used as a measure of lung uptake. Results: Hyperoxia exposure resulted in a 74% increase in 99mTc-HMPAO lung uptake, which peaked at 7 d and persisted for the 21 d of exposure. 99mTc-duramycin lung uptake was also maximal at 7 d of exposure but decreased to near control levels by 21 d. The sustained elevation of 99mTc-HMPAO uptake suggests ongoing changes in lung redox status whereas cell death appears to have subsided by 21 d. Conclusion: These results suggest the potential use of 99mTc-HMPAO and 99mTc-duramycin as redox and cell-death imaging biomarkers, respectively, for the in vivo identification and assessment of different stages of lung injury.


Nuclear Medicine and Biology | 2015

In vivo detection of hyperoxia-induced pulmonary endothelial cell death using 99mTc-Duramycin

Said H. Audi; Elizabeth R. Jacobs; Ming Zhao; David L. Roerig; Steven T. Haworth; Anne V. Clough

INTRODUCTION (99m)Tc-duramycin, DU, is a SPECT biomarker of tissue injury identifying cell death. The objective of this study is to investigate the potential of DU imaging to quantify capillary endothelial cell death in rat lung injury resulting from hyperoxia exposure as a model of acute lung injury. METHODS Rats were exposed to room air (normoxic) or >98% O2 for 48 or 60 hours. DU was injected i.v. in anesthetized rats, scintigraphy images were acquired at steady-state, and lung DU uptake was quantified from the images. Post-mortem, the lungs were removed for histological studies. Sequential lung sections were immunostained for caspase activation and endothelial and epithelial cells. RESULTS Lung DU uptake increased significantly (p<0.001) by 39% and 146% in 48-hr and 60-hr exposed rats, respectively, compared to normoxic rats. There was strong correlation (r(2)=0.82, p=0.005) between lung DU uptake and the number of cleaved caspase 3 (CC3) positive cells, and endothelial cells accounted for more than 50% of CC3 positive cells in the hyperoxic lungs. Histology revealed preserved lung morphology through 48 hours. By 60 hours there was evidence of edema, and modest neutrophilic infiltrate. CONCLUSIONS Rat lung DU uptake in vivo increased after just 48 hours of >98% O2 exposure, prior to the onset of any substantial evidence of lung injury. These results suggest that apoptotic endothelial cells are the primary contributors to the enhanced DU lung uptake, and support the utility of DU imaging for detecting early endothelial cell death in vivo.


Pulmonary circulation | 2012

Furegrelate, a thromboxane synthase inhibitor, blunts the development of pulmonary arterial hypertension in neonatal piglets.

K Dinesh Hirenallur-S.; Neil D. Detweiler; Steven T. Haworth; Jeaninne T. Leming; John B. Gordon; Nancy J. Rusch

The development of pulmonary arterial hypertension (PAH) in pediatric patients has been linked to the production of the arachidonic acid metabolite, thromboxane A2 (TxA2). The present study evaluated the therapeutic effect of furegrelate sodium, a thromboxane synthase inhibitor, on the development of PAH in a neonatal piglet model. Three-day-old piglets were exposed to 21 days of normoxia (N; 21% FIO2) or chronic hypoxia (CH; 10% FIO2). A third group of piglets received the oral TxA2 synthase inhibitor, furegrelate (3 mg/kg, 2 or 3 times daily) at the induction of CH. In vivo hemodynamics confirmed a 2.55-fold increase of the pulmonary vascular resistance index (PVRI) in CH piglets (104±7 WU) compared to N piglets (40±2 WU). The CH piglets treated twice daily with furegrelate failed to show improved PVRI, but furegrelate three times daily lowered the elevated PVRI in CH piglets by 34% to 69±5 WU and ameliorated the development of right ventricular hypertrophy. Microfocal X-ray computed tomography (CT) scanning was used to estimate the diameter-independent distensibility term, α (% change in diameter per Torr). Pulmonary arterial distensibility in isolated lungs of CH piglets (α=1.0±0.1% per Torr) was lower than that of N piglets (α=1.5±0.1% per Torr) indicative of vascular remodeling. Arterial distensibility was partially restored in furegrelate-treated CH piglets (α =1.2±0.1% per Torr) and microscopic evidence showing muscularization of small pulmonary arteries also was less prominent in these animals. Finally, isolated lungs of furegrelate-treated piglets showed lower basal and vasodilator-induced transpulmonary pressures compared to CH animals. These findings suggest that pharmacological inhibition of TxA2 synthase activity by furegrelate blunts the development of hypoxia-induced PAH in an established neonatal piglet model primarily by preserving the structural integrity of the pulmonary vasculature.


Pharmacology Research & Perspectives | 2015

Simvastatin mitigates increases in risk factors for and the occurrence of cardiac disease following 10 Gy total body irradiation

Marek Lenarczyk; Jidong Su; Steven T. Haworth; Richard A. Komorowski; Brian L. Fish; Raymond Q. Migrino; Leanne Harmann; J.W. Hopewell; Amy Kronenberg; Shailendra B. Patel; John E. Moulder; John E. Baker

The ability of simvastatin to mitigate the increases in risk factors for and the occurrence of cardiac disease after 10 Gy total body irradiation (TBI) was determined. This radiation dose is relevant to conditioning for stem cell transplantation and threats from radiological terrorism. Male rats received single dose TBI of 10 Gy. Age‐matched, sham‐irradiated rats served as controls. Lipid profile, heart and liver morphology and cardiac mechanical function were determined for up to 120 days after irradiation. TBI resulted in a sustained increase in total‐ and LDL‐cholesterol (low‐density lipoprotein‐cholesterol), and triglycerides. Simvastatin (10 mg/kg body weight/day) administered continuously from 9 days after irradiation mitigated TBI‐induced increases in total‐ and LDL‐cholesterol and triglycerides, as well as liver injury. TBI resulted in cellular peri‐arterial fibrosis, whereas control hearts had less collagen and fibrosis. Simvastatin mitigated these morphological injuries. TBI resulted in cardiac mechanical dysfunction. Simvastatin mitigated cardiac mechanical dysfunction 20–120 days following TBI. To determine whether simvastatin affects the ability of the heart to withstand stress after TBI, injury from myocardial ischemia/reperfusion was determined in vitro. TBI increased the severity of an induced myocardial infarction at 20 and 80 days after irradiation. Simvastatin mitigated the severity of this myocardial infarction at 20 and 80 days following TBI. It is concluded simvastatin mitigated the increases in risk factors for cardiac disease and the extent of cardiac disease following TBI. This statin may be developed as a medical countermeasure for the mitigation of radiation‐induced cardiac disease.


Academic Radiology | 2003

Influence of gravity on radiographic contrast material-based measurements of regional blood flow distribution

Anne V. Clough; Steven T. Haworth; David L. Roerig; Eric A. Hoffman; Christopher A. Dawson

RATIONALE AND OBJECTIVES Radiographic measurement of regional blood flow distribution in the lungs is potentially biased because the contrast material used to track flow is denser than blood. The authors performed this study to evaluate the effect of gravity on flow estimates by using an experimental test phantom and numeric simulations. MATERIALS AND METHODS Cross-sectionally uniform boluses of radiopaque contrast material were delivered at the upstream end of a horizontal inlet tube connected to a downstream axisymmetric bifuration attached to collecting tubing spirals. The phantom was imaged by using both planar angiography and dynamic multi-detector row computed tomography (CT) during the passage of the bolus through the phantom. The images were analyzed to determine the relative amounts of contrast material traveling through the top and bottom branches of the bifurcation by using varying Reynolds numbers and ratios of inlet tube volume to bolus volume. Numeric simulations of flow within a straight channeL with use of a dispersion operator intended to simulate settling of the bolus due to gravity, were performed under conditions representative of those in the experiments. RESULTS When the plane of the bifurcation was vertical and actual flow through the two branches was equal, the fraction of contrast material passing through the downward-directed branch increased with decreasing Reynolds number and increasing inlet tube-bolus volume ratio. This occurred in both the experiments and the simulations. CONCLUSION Because in the circulation Reynolds number decreases and pathway length increases with decreasing vessel diameter, the accuracy of regional flow measurements obtained with angiography or CT within the lungs may be limited by density differences between contrast material and blood.


The Journal of Nuclear Medicine | 2016

Biomarkers for Radiation Pneumonitis Using Noninvasive Molecular Imaging

Meetha Medhora; Steven T. Haworth; Yu Liu; Jayashree Narayanan; Feng Gao; Ming Zhao; Said H. Audi; Elizabeth R. Jacobs; Brian L. Fish; Anne V. Clough

Our goal is to develop minimally invasive biomarkers for predicting radiation-induced lung injury before symptoms develop. Currently, there are no biomarkers that can predict radiation pneumonitis. Radiation damage to the whole lung is a serious risk in nuclear accidents or in radiologic terrorism. Our previous studies have shown that a single dose of 15 Gy of x-rays to the thorax causes severe pneumonitis in rats by 6–8 wk. We have also developed a mitigator for radiation pneumonitis and fibrosis that can be started as late as 5 wk after radiation. Methods: We used 2 functional SPECT probes in vivo in irradiated rat lungs. Regional pulmonary perfusion was measured by injection of 99mTc-macroaggregated albumin. Perfused volume was determined by comparing the volume of distribution of 99mTc-macroaggregated albumin to the anatomic lung volume obtained by small-animal CT. A second probe, 99mTc-labeled Duramycin, which binds to apoptotic cells, was used to measure pulmonary cell death in the same rat model. Results: The perfused volume of lung was decreased by about 25% at 1, 2, and 3 wk after receipt of 15 Gy, and 99mTc-Duramycin uptake was more than doubled at 2 and 3 wk. There was no change in body weight, breathing rate, or lung histology between irradiated and nonirradiated rats at these times. Pulmonary vascular resistance and vascular permeability measured in isolated perfused lungs ex vivo increased at 2 wk after 15 Gy of irradiation. Conclusion: Our results suggest that SPECT biomarkers have the potential to predict radiation injury to the lungs before substantial functional or histologic damage is observed. Early prediction of radiation pneumonitis in time to initiate mitigation will benefit those exposed to radiation in the context of therapy, accidents, or terrorism.


Journal of Applied Physiology | 2012

Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury.

Said H. Audi; David L. Roerig; Steven T. Haworth; Anne V. Clough

Rat exposure to 60% oxygen (O(2)) for 7 days (hyper-60) or to >95% O(2) for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O(2). The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ≈ 50% and ≈ 250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (≈ 26%) and hyper-95R (≈ 56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ≈ 50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia.

Collaboration


Dive into the Steven T. Haworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Roerig

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Said H. Audi

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John B. Gordon

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge