Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven van Nocker is active.

Publication


Featured researches published by Steven van Nocker.


BMC Genomics | 2003

The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

Steven van Nocker; Philip Ludwig

BackgroundThe WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events.ResultsWe analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes.ConclusionsOur results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions.


PLOS Genetics | 2008

Genic and global functions for Paf1C in chromatin modification and gene expression in arabidopsis

Sookyung Oh; Sunchung Park; Steven van Nocker

In budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3′ shift in the distribution of H3K4me3 and a 5′ shift in the distribution of H3K36me2 within genes. We found that genes regulated by plant Paf1C showed strong enrichment for both H3K4me3 and H3K27me3 and also showed a high degree of tissue-specific expression. At the Paf1C- and PcG-regulated gene FLC, transcriptional silencing and loss of H3K4me3 and H3K36me2 were accompanied by expansion of H3K27me3 into the promoter and transcriptional start regions and further enrichment of H3K27me3 within the transcribed region. These results highlight both genic and global functions for plant Paf1C in histone modification and gene expression, and link transcriptional activity with cellular memory.


Plant Physiology | 2006

Identification of Genes with Potential Roles in Apple Fruit Development and Biochemistry through Large-Scale Statistical Analysis of Expressed Sequence Tags

Sunchung Park; Nobuko Sugimoto; Matthew D. Larson; Randy Beaudry; Steven van Nocker

Advanced studies of apple (Malus domestica Borkh) development, physiology, and biochemistry have been hampered by the lack of appropriate genomics tools. One exception is the recent acquisition of extensive expressed sequence tag (EST) data. The entire available EST dataset for apple resulted from the efforts of at least 20 contributors and was derived from more than 70 cDNA libraries representing diverse transcriptional profiles from a variety of organs, fruit parts, developmental stages, biotic and abiotic stresses, and from at least nine cultivars. We analyzed apple EST sequences available in public databanks using statistical algorithms to identify those apple genes that are likely to be highly expressed in fruit, expressed uniquely or preferentially in fruit, and/or temporally or spatially regulated during fruit growth and development. We applied these results to the analysis of biochemical pathways involved in biosynthesis of precursors for volatile esters and identified a subset of apple genes that may participate in generating flavor and aroma components found in mature fruit.


Plant Physiology | 2003

Cloning, Expression, and Characterization of Sorbitol Transporters from Developing Sour Cherry Fruit and Leaf Sink Tissues

Zhifang Gao; Laurence Maurousset; Rémi Lemoine; Sang Dong Yoo; Steven van Nocker; Wayne Loescher

The acyclic polyol sorbitol is a primary photosynthetic product and the principal photosynthetic transport substance in many economically important members of the family Rosaceace (e.g. almond [Prunus dulcis (P. Mill.) D.A. Webber], apple [Malus pumila P. Mill.], cherry [Prunus spp.], peach [Prunus persicaL. Batsch], and pear [Pyrus communis]). To understand key steps in long-distance transport and particularly partitioning and accumulation of sorbitol in sink tissues, we have cloned two sorbitol transporter genes (PcSOT1 andPcSOT2) from sour cherry (Prunus cerasus) fruit tissues that accumulate large quantities of sorbitol. Sorbitol uptake activities and other characteristics were measured by heterologous expression of PcSOT1 andPcSOT2 in yeast (Saccharomyces cerevisiae). Both genes encode proton-dependent, sorbitol-specific transporters with similar affinities (K m sorbitol of 0.81 mm for PcSOT1 and 0.64 mm for PcSOT2). Analyses of gene expression of these transporters, however, suggest different roles during leaf and fruit development. PcSOT1 is expressed throughout fruit development, but especially when growth and sorbitol accumulation rates are highest. In leaves, PcSOT1 expression is highest in young, expanding tissues, but substantially less in mature leaves. In contrast, PcSOT2 is mainly expressed only early in fruit development and not in leaves. Compositional analyses suggest that transport mediated by PcSOT1 and PcSOT2 plays a major role in sorbitol and dry matter accumulation in sour cherry fruits. Presence of these transporters and the high fruit sorbitol concentrations suggest that there is an apoplastic step during phloem unloading and accumulation in these sink tissues. Expression of PcSOT1 in young leaves before completion of the transition from sink to source is further evidence for a role in determining sink activity.


PLOS ONE | 2011

Identification of the Arabidopsis REDUCED DORMANCY 2 Gene Uncovers a Role for the Polymerase Associated Factor 1 Complex in Seed Dormancy

Yongxiu Liu; Regina Geyer; Martijn van Zanten; Annaick Carles; Yong Li; Anja Hörold; Steven van Nocker; Wim J. J. Soppe

The life of a plant is characterized by major phase transitions. This includes the agriculturally important transitions from seed to seedling (germination) and from vegetative to generative growth (flowering induction). In many plant species, including Arabidopsis thaliana, freshly harvested seeds are dormant and incapable of germinating. Germination can occur after the release of dormancy and the occurrence of favourable environmental conditions. Although the hormonal control of seed dormancy is well studied, the molecular mechanisms underlying the induction and release of dormancy are not yet understood. In this study, we report the cloning and characterization of the mutant reduced dormancy 2-1 (rdo2-1). We found that RDO2 is allelic to the recently identified dormancy gene TFIIS, which is a transcription elongation factor. HUB1, which was previously called RDO4, was identified in the same mutagenesis screen for reduced dormancy as rdo2-1 and was also shown to be involved in transcription elongation. The human homologues of RDO2 and HUB1 interact with the RNA Polymerase II Associated Factor 1 Complex (PAF1C). Therefore, we investigated the effect of other Arabidopsis PAF1C related factors; VIP4, VIP5, ELF7, ELF8 and ATXR7 on seed dormancy. Mutations in these genes resulted in reduced dormancy, similar to hub1-2 and rdo2-1. Consistent with a role at the end of seed maturation, we found that HUB1, RDO2 and VIP5 are upregulated during this developmental phase. Since mutants in PAF1C related factors are also described to be early flowering, we conclude that these components are involved in the regulation of both major developmental transitions in the plant.


BMC Plant Biology | 2010

Analysis of promoter activity of members of the PECTATE LYASE-LIKE (PLL) gene family in cell separation in Arabidopsis.

Lingxia Sun; Steven van Nocker

BackgroundPectate lyases depolymerize pectins by catalyzing the eliminative cleavage of α-1,4-linked galacturonic acid. Pectate lyase-like (PLL) genes make up among the largest and most complex families in plants, but their cellular and organismal roles have not been well characterized, and the activity of these genes has been assessed only at the level of entire organs or plant parts, potentially obscuring important sub-organ or cell-type-specific activities. As a first step to understand the potential functional diversity of PLL genes in plants and specificity of individual genes, we utilized a reporter gene approach to document the spatial and temporal promoter activity for 23 of the 26 members of the Arabidopsis thaliana (Arabidopsis) PLL gene family throughout development, focusing on processes involving cell separation.ResultsNumerous PLL promoters directed activity in localized domains programmed for cell separation, such as the abscission zones of the sepal, petal, stamen, and seed, as well as the fruit dehiscence zone. Several drove activity in cell types expected to facilitate separation, including the style and root endodermal and cortical layers during lateral root emergence. However, PLL promoters were active in domains not obviously programmed for separation, including the stipule, hydathode and root axis. Nearly all PLL promoters showed extensive overlap of activity in most of the regions analyzed.ConclusionsOur results document potential for involvement of PLL genes in numerous aspects of growth and development both dependent and independent of cell separation. Although the complexity of the PLL gene family allows for enormous potential for gene specialization through spatial or temporal regulation, the high degree of overlap of activity among the PLL promoters suggests extensive redundancy. Alternatively, functional specialization might be determined at the post-transcriptional or protein level.


Euphytica | 2012

Genetic diversity of red-fleshed apples (Malus)

Steven van Nocker; Garrett E. Berry; James Najdowski; Roberto Michelutti; Margie Luffman; Philip L. Forsline; Nihad Alsmairat; Randy Beaudry; Muraleedharan G. Nair; Matthew Ordidge

Anthocyanins are flavonoid pigments imparting red, blue, or purple pigmentation to fruits, flowers and foliage. These compounds are powerful antioxidants in vitro, and are widely believed to contribute to human health. The fruit of the domestic apple (Malus x domestica) is a popular and important source of nutrients, and is considered one of the top ‘functional foods’—those foods that have inherent health-promoting benefits beyond basic nutritional value. The pigmentation of typical red apple fruits results from accumulation of anthocyanin in the skin. However, numerous genotypes of Malus are known that synthesize anthocyanin in additional fruit tissues including the core and cortex (flesh). Red-fleshed apple genotypes are an attractive starting point for development of novel varieties for consumption and nutraceutical use through traditional breeding and biotechnology. However, cultivar development is limited by lack of characterization of the diversity of genetic backgrounds showing this trait. We identified and cataloged red-fleshed apple genotypes from four Malus diversity collections representing over 3,000 accessions including domestic cultivars, wild species, and named hybrids. We found a striking range of flesh color intensity and pattern among accessions, including those carrying the MYB10R6 allele conferring ectopic expression of a key transcriptional regulator of anthocyanin biosynthesis. Although MYB10R6 was strongly associated with red-fleshed fruit among genotypes, this allele was neither sufficient nor required for this trait in all genotypes. Nearly all red-fleshed accessions tested could be traced back to ‘Niedzwetzkyana’, a presumed natural form of M. sieversii native to central Asia.


Annals of Botany | 2012

Identification of putative candidate genes involved in cuticle formation in Prunus avium (sweet cherry) fruit

Merianne Alkio; Uwe Jonas; Thorben Sprink; Steven van Nocker; Moritz Knoche

BACKGROUND AND AIMS The cuticular membrane (CM) of Prunus avium (sweet cherry) and other fleshy fruit is under stress. Previous research indicates that the resultant strain promotes microscopic cuticular cracking. Microcracks impair the function of the CM as a barrier against pathogens and uncontrolled water loss/uptake. Stress and strain result from a cessation of CM deposition during early development, while the fruit surface continues to expand. The cessation of CM deposition, in turn, may be related to an early downregulation of CM-related genes. The aims of this study were to identify genes potentially involved in CM formation in sweet cherry fruit and to quantify their expression levels. METHODS Fruit growth and CM deposition were quantified weekly from anthesis to maturity and rates of CM deposition were calculated. Sequences of genes expressed in the sweet cherry fruit skin (exocarp) were generated using high-throughput sequencing of cDNA and de novo assembly and analysed using bioinformatics tools. Relative mRNA levels of selected genes were quantified in the exocarp and fruit flesh (mesocarp) weekly using reverse transcriptase-quantitative real-time PCR and compared with the calculated CM deposition rate over time. KEY RESULTS The rate of CM deposition peaked at 93 (±5) μg per fruit d(-1) about 19 d after anthesis. Based on sequence analyses, 18 genes were selected as potentially involved in CM formation. Selected sweet cherry genes shared up to 100 and 98 % similarity with the respective Prunus persica (peach) and Arabidopsis thaliana genes. Expression of 13 putative CM-related genes was restricted to the exocarp and correlated positively with the CM deposition rate. CONCLUSIONS The results support the view that the cessation of CM deposition during early sweet cherry fruit development is accounted for by a downregulation of genes involved in CM deposition. Genes that merit further investigation include PaWINA, PaWINB, PaLipase, PaLTPG1, PaATT1, PaLCR, PaGPAT4/8, PaLACS2, PaLACS1 and PaCER1.


Plant Physiology | 2010

PLANT HOMOLOGOUS TO PARAFIBROMIN Is a Component of the PAF1 Complex and Assists in Regulating Expression of Genes within H3K27ME3-Enriched Chromatin

Sunchung Park; Sookyung Oh; Julissa Ek-Ramos; Steven van Nocker

The human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo. In striking contrast to the developmental pleiotropy conferred by mutation in other plant Paf1C component genes in Arabidopsis, loss of PHP specifically conditioned accelerated phase transition from vegetative growth to flowering and resulted in misregulation of a very limited subset of genes that included the flowering repressor FLOWERING LOCUS C. Those genes targeted by PHP were distinguished from the bulk of Arabidopsis genes and other plant Paf1C targets by strong enrichment for trimethylation of lysine-27 on histone H3 (H3K27me3) within chromatin. These findings suggest that PHP is a component of a plant Paf1C protein in Arabidopsis, but has a more specialized role in modulating expression of a subset of Paf1C targets.


Horticulture research | 2014

Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes.

Merianne Alkio; Uwe Jonas; Myriam Declercq; Steven van Nocker; Moritz Knoche

The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., ‘Regina’), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.

Collaboration


Dive into the Steven van Nocker's collaboration.

Top Co-Authors

Avatar

Sunchung Park

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Hua Zhang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Lingxia Sun

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Sookyung Oh

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip Ludwig

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Randy Beaudry

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Wayne Loescher

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge