Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart Greenhill is active.

Publication


Featured researches published by Stuart Greenhill.


Nucleic Acids Research | 2009

IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels

Anthony J. Harmar; Rebecca Hills; Edward M. Rosser; Martin Jones; O. Peter Buneman; Donald R. Dunbar; Stuart Greenhill; Valerie A. Hale; Joanna L. Sharman; Tom I. Bonner; William A. Catterall; Anthony P. Davenport; Philippe Delagrange; Colin Dollery; Steven M. Foord; George A. Gutman; Vincent Laudet; Richard R. Neubig; Eliot H. Ohlstein; Richard W. Olsen; John A. Peters; Jean-Philippe Pin; Robert R. Ruffolo; David B. Searls; Mathew W. Wright; Michael Spedding

The IUPHAR database (IUPHAR-DB) integrates peer-reviewed pharmacological, chemical, genetic, functional and anatomical information on the 354 nonsensory G protein-coupled receptors (GPCRs), 71 ligand-gated ion channel subunits and 141 voltage-gated-like ion channel subunits encoded by the human, rat and mouse genomes. These genes represent the targets of approximately one-third of currently approved drugs and are a major focus of drug discovery and development programs in the pharmaceutical industry. IUPHAR-DB provides a comprehensive description of the genes and their functions, with information on protein structure and interactions, ligands, expression patterns, signaling mechanisms, functional assays and biologically important receptor variants (e.g. single nucleotide polymorphisms and splice variants). In addition, the phenotypes resulting from altered gene expression (e.g. in genetically altered animals or in human genetic disorders) are described. The content of the database is peer reviewed by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR); the data are provided through manual curation of the primary literature by a network of over 60 subcommittees of NC-IUPHAR. Links to other bioinformatics resources, such as NCBI, Uniprot, HGNC and the rat and mouse genome databases are provided. IUPHAR-DB is freely available at http://www.iuphar-db.org.


Science | 2015

Adult cortical plasticity depends on an early postnatal critical period

Stuart Greenhill; K. Juczewski; Annelies de Haan; Gillian Seaton; Kevin Fox; Neil Robert Hardingham

Keeping synaptic plasticity plastic Neuronal synapses in the brain adjust according to shifting demands as we experience the world. This synaptic plasticity forms the basis for critical periods in the visual and somatosensory systems. Greenhill et al. have now found, in mice, a critical period for the development of plasticity itself. At the core is a protein that in its mutant form is associated with schizophrenia. Disrupting this proteins function temporarily during early development caused a failure in brain plasticity in adult mice. Science, this issue p. 424 In mice, neuronal plasticity in later life depends on neuronal activity during a critical period earlier in development. Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of “disrupted in schizophrenia 1” (DISC1)—a molecule implicated in psychiatric disorders—resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.


Neuron | 2015

Hebbian and Homeostatic Plasticity Mechanisms in Regular Spiking and Intrinsic Bursting Cells of Cortical Layer 5

Stuart Greenhill; Adam Ranson; Kevin Fox

Summary Layer 5 contains the major projection neurons of the neocortex and is composed of two major cell types: regular spiking (RS) cells, which have cortico-cortical projections, and intrinsic bursting cells (IB), which have subcortical projections. Little is known about the plasticity processes and specifically the molecular mechanisms by which these two cell classes develop and maintain their unique integrative properties. In this study, we find that RS and IB cells show fundementally different experience-dependent plasticity processes and integrate Hebbian and homeostatic components of plasticity differently. Both RS and IB cells showed TNFα-dependent homeostatic plasticity in response to sensory deprivation, but IB cells were capable of a much faster synaptic depression and homeostatic rebound than RS cells. Only IB cells showed input-specific potentiation that depended on CaMKII autophosphorylation. Our findings demonstrate that plasticity mechanisms are not uniform within the neocortex, even within a cortical layer, but are specialized within subcircuits.


Neuroscience | 2010

Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro.

Stuart Greenhill; Roland S. G. Jones

Although most anti-epileptic drugs are considered to have a primary molecular target, it is clear that their actions are unlikely to be limited to effects on a single aspect of inhibitory synaptic transmission, excitatory transmission or voltage-gated ion channels. Systemically administered drugs can obviously simultaneously access all possible targets, so we have attempted to determine the overall effect of diverse agents on the balance between GABAergic inhibition, glutamatergic excitation and cellular excitability in neurones of the rat entorhinal cortex in vitro. We used an approach developed for estimating global background synaptic excitation and inhibition from fluctuations in membrane potential obtained by intracellular recordings. We have previously validated this approach in entorhinal cortical neurones [Greenhill and Jones (2007a) Neuroscience 147:884–892]. Using this approach, we found that, despite their differing pharmacology, the drugs tested (phenytoin, lamotrigine, valproate, gabapentin, felbamate, tiagabine) were unified in their ability to increase the ratio of background GABAergic inhibition to glutamatergic excitation. This could occur as a result of decreased excitation concurrent with increased inhibition (phenytoin, lamotrigine, valproate), a decrease in excitation alone (gabapentin, felbamate), or even with a differential increase in both (tiagabine). Additionally, we found that the effects on global synaptic conductances agreed well with whole cell patch recordings of spontaneous glutamate and GABA release (our previous studies and further data presented here). The consistency with which the synaptic inhibition:excitation ratio was increased by the antiepileptic drugs tested was matched by an ability of all drugs to concurrently reduce intrinsic neuronal excitability. Thus, it seems possible that specific molecular targets among antiepileptic drugs are less important than the ability to increase the inhibition:excitation ratio and reduce overall neuronal and network excitability.


Neuroscience | 2007

Simultaneous estimation of global background synaptic inhibition and excitation from membrane potential fluctuations in layer III neurons of the rat entorhinal cortex in vitro

Stuart Greenhill; Roland S. G. Jones

It is becoming clear that the detection and integration of synaptic input and its conversion into an output signal in cortical neurons are strongly influenced by background synaptic activity or “noise.” The majority of this noise results from the spontaneous release of synaptic transmitters, interacting with ligand-gated ion channels in the postsynaptic neuron [Berretta N, Jones RSG (1996); A comparison of spontaneous synaptic EPSCs in layer V and layer II neurones in the rat entorhinal cortex in vitro. J Neurophysiol 76:1089–1110; Jones RSG, Woodhall GL (2005) Background synaptic activity in rat entorhinal cortical neurons: differential control of transmitter release by presynaptic receptors. J Physiol 562:107–120; LoTurco JJ, Mody I, Kriegstein AR (1990) Differential activation of glutamate receptors by spontaneously released transmitter in slices of neocortex. Neurosci Lett 114:265–271; Otis TS, Staley KJ, Mody I (1991) Perpetual inhibitory activity in mammalian brain slices generated by spontaneous GABA release. Brain Res 545:142–150; Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707–722; Salin PA, Prince DA (1996) Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol 75:1573–1588; Staley KJ (1999) Quantal GABA release: noise or not? Nat Neurosci 2:494–495; Woodhall GL, Bailey SJ, Thompson SE, Evans DIP, Stacey AE, Jones RSG (2005) Fundamental differences in spontaneous synaptic inhibition between deep and superficial layers of the rat entorhinal cortex. Hippocampus 15:232–245]. The function of synaptic noise has been the subject of debate for some years, but there is increasing evidence that it modifies or controls neuronal excitability and, thus, the integrative properties of cortical neurons. In the present study we have investigated a novel approach [Rudolph M, Piwkowska Z, Badoual M, Bal T, Destexhe A (2004) A method to estimate synaptic conductances from membrane potential fluctuations. J Neurophysiol 91:2884–2896] to simultaneously quantify synaptic inhibitory and excitatory synaptic noise, together with postsynaptic excitability, in rat entorhinal cortical neurons in vitro. The results suggest that this is a viable and useful approach to the study of the function of synaptic noise in cortical networks.


Philosophical Transactions of the Royal Society B | 2017

Time-course and mechanisms of homeostatic plasticity in layers 2/3 and 5 of the barrel cortex

Stanislaw Glazewski; Stuart Greenhill; Kevin Fox

Recent studies have shown that ocular dominance plasticity in layer 2/3 of the visual cortex exhibits a form of homeostatic plasticity that is related to synaptic scaling and depends on TNFα. In this study, we tested whether a similar form of plasticity was present in layer 2/3 of the barrel cortex and, therefore, whether the mechanism was likely to be a general property of cortical neurons. We found that whisker deprivation could induce homeostatic plasticity in layer 2/3 of barrel cortex, but not in a mouse strain lacking synaptic scaling. The time-course of homeostatic plasticity in layer 2/3 was similar to that of L5 regular spiking (RS) neurons (L5RS), but slower than that of L5 intrinsic bursting (IB) neurons (L5IB). In layer 5, the strength of evoked whisker responses and ex vivo miniature excitatory post-synaptic currents (mEPSCs) amplitudes showed an identical time-course for homeostatic plasticity, implying that plasticity at excitatory synapses contacting layer 5 neurons is sufficient to explain the changes in evoked responses. Spontaneous firing rate also showed homeostatic behaviour for L5IB cells, but was absent for L5RS cells over the time-course studied. Spontaneous firing rate homeostasis was found to be independent of evoked response homeostasis suggesting that the two depend on different mechanisms. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


eLife | 2016

CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

Miou Zhou; Stuart Greenhill; Shan Huang; Tawnie K. Silva; Yoshitake Sano; Shumin Wu; Ying Cai; Yoshiko Nagaoka; Megha Sehgal; Denise J. Cai; Yong-Seok Lee; Kevin Fox; Alcino J. Silva

Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV. DOI: http://dx.doi.org/10.7554/eLife.20985.001


Neuropharmacology | 2017

Phase-amplitude coupled persistent theta and gamma oscillations in rat primary motor cortex in vitro

Nicholas W. Johnson; Mazhar Özkan; Adrian Burgess; Emma Prokic; Keith A. Wafford; Michael J. O'Neill; Stuart Greenhill; Ian M. Stanford; Gavin L. Woodhall

ABSTRACT In vivo, theta (4–7 Hz) and gamma (30–80 Hz) neuronal network oscillations are known to coexist and display phase‐amplitude coupling (PAC). However, in vitro, these oscillations have for many years been studied in isolation. Using an improved brain slice preparation technique we have, using co‐application of carbachol (10 &mgr;M) and kainic acid (150 nM), elicited simultaneous theta (6.6 ± 0.1 Hz) and gamma (36.6 ± 0.4 Hz) oscillations in rodent primary motor cortex (M1). Each oscillation showed greatest power in layer V. Using a variety of time series analyses we detected significant cross‐frequency coupling in 74% of slice preparations. Differences were observed in the pharmacological profile of each oscillation. Thus, gamma oscillations were reduced by the GABAA receptor antagonists, gabazine (250 nM and 2 &mgr;M), and picrotoxin (50 &mgr;M) and augmented by AMPA receptor antagonism with SYM2206 (20 &mgr;M). In contrast, theta oscillatory power was increased by gabazine, picrotoxin and SYM2206. GABAB receptor blockade with CGP55845 (5 &mgr;M) increased both theta and gamma power, and similar effects were seen with diazepam, zolpidem, MK801 and a series of metabotropic glutamate receptor antagonists. Oscillatory activity at both frequencies was reduced by the gap junction blocker carbenoxolone (200 &mgr;M) and by atropine (5 &mgr;M). These data show theta and gamma oscillations in layer V of rat M1 in vitro are cross‐frequency coupled, and are mechanistically distinct. The development of an in vitro model of phase‐amplitude coupled oscillations will facilitate further mechanistic investigation of the generation and modulation of coupled activity in mammalian cortex. HIGHLIGHTSFirst demonstration of simultaneous theta gamma oscillations in a reduced preparation of M1 in vitro.Time series analysis showing cross‐frequency coupling for first time in M1 in vitro.Pharmacological dissection of the two rhythms showing discrete machanisms.


PLOS ONE | 2014

Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers

Stuart Greenhill; Sophie E. L. Chamberlain; Alex M. Lench; Peter V. Massey; Kathryn Heather Yuill; Gavin L. Woodhall; Roland S. G. Jones

The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.


Neuropharmacology | 2012

Ethosuximide modifies network excitability in the rat entorhinal cortex via an increase in GABA release.

Stuart Greenhill; Nicola H. Morgan; Peter V. Massey; Gavin L. Woodhall; Roland S. G. Jones

Collaboration


Dive into the Stuart Greenhill's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Jones

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge