Subashini C. Jayasiri
Mae Fah Luang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Subashini C. Jayasiri.
Fungal Diversity | 2015
Subashini C. Jayasiri; Kevin D. Hyde; Hiran A. Ariyawansa; Jayarama D. Bhat; Bart Buyck; Lei Cai; Yu-Cheng Dai; Kamel A. Abd-Elsalam; Damien Ertz; Iman Hidayat; Rajesh Jeewon; E. B. Gareth Jones; Ali H. Bahkali; Samantha C. Karunarathna; Jian-Kui Liu; J. Jennifer Luangsa-ard; H. Thorsten Lumbsch; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Jean-Marc Moncalvo; Masoomeh Ghobad-Nejhad; Henrik R. Nilsson; Ka-Lai Pang; O. L. Pereira; Alan J. L. Phillips; Olivier Raspé; Adam W. Rollins; Andrea I. Romero; Javier Etayo; Faruk Selçuk
Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.
Fungal Diversity | 2015
Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansa; Darbhe J. Bhat; Saranyaphat Boonmee; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Rungtiwa Phookamsak; Chayanard Phukhamsakda; Belle Damodara Shenoy; Mohamed A. Abdel-Wahab; Bart Buyck; Jie Chen; K. W. Thilini Chethana; Chonticha Singtripop; Dong Qin Dai; Yu Cheng Dai; Dinushani A. Daranagama; Asha J. Dissanayake; Mingkwan Doilom; Melvina J. D’souza; Xin Lei Fan; Ishani D. Goonasekara; Kazuyuki Hirayama; Sinang Hongsanan; Subashini C. Jayasiri; Ruvishika S. Jayawardena; Samantha C. Karunarathna; Wen-Jing Li
This paper is a compilation of notes on 110 fungal taxa, including one new family, 10 new genera, and 76 new species, representing a wide taxonomic and geographic range. The new family, Paradictyoarthriniaceae is introduced based on its distinct lineage in Dothideomycetes and its unique morphology. The family is sister to Biatriosporaceae and Roussoellaceae. The new genera are Allophaeosphaeria (Phaeosphaeriaceae), Amphibambusa (Amphisphaeriaceae), Brunneomycosphaerella (Capnodiales genera incertae cedis), Chaetocapnodium (Capnodiaceae), Flammeascoma (Anteagloniaceae), Multiseptospora (Pleosporales genera incertae cedis), Neogaeumannomyces (Magnaporthaceae), Palmiascoma (Bambusicolaceae), Paralecia (Squamarinaceae) and Sarimanas (Melanommataceae). The newly described species are the Ascomycota Aliquandostipite manochii, Allophaeosphaeria dactylidis, A. muriformia, Alternaria cesenica, Amphibambusa bambusicola, Amphisphaeria sorbi, Annulohypoxylon thailandicum, Atrotorquata spartii, Brunneomycosphaerella laburni, Byssosphaeria musae, Camarosporium aborescentis, C. aureum, C. frutexensis, Chaetocapnodium siamensis, Chaetothyrium agathis, Colletotrichum sedi, Conicomyces pseudotransvaalensis, Cytospora berberidis, C. sibiraeae, Diaporthe thunbergiicola, Diatrype palmicola, Dictyosporium aquaticum, D. meiosporum, D. thailandicum, Didymella cirsii, Dinemasporium nelloi, Flammeascoma bambusae, Kalmusia italica, K. spartii, Keissleriella sparticola, Lauriomyces synnematicus, Leptosphaeria ebuli, Lophiostoma pseudodictyosporium, L. ravennicum, Lophiotrema eburnoides, Montagnula graminicola, Multiseptospora thailandica, Myrothecium macrosporum, Natantispora unipolaris, Neogaeumannomyces bambusicola, Neosetophoma clematidis, N. italica, Oxydothis atypica, Palmiascoma gregariascomum, Paraconiothyrium nelloi, P. thysanolaenae, Paradictyoarthrinium tectonicola, Paralecia pratorum, Paraphaeosphaeria spartii, Pestalotiopsis digitalis, P. dracontomelon, P. italiana, Phaeoisaria pseudoclematidis, Phragmocapnias philippinensis, Pseudocamarosporium cotinae, Pseudocercospora tamarindi, Pseudotrichia rubriostiolata, P. thailandica, Psiloglonium multiseptatum, Saagaromyces mangrovei, Sarimanas pseudofluviatile, S. shirakamiense, Tothia spartii, Trichomerium siamensis, Wojnowicia dactylidicola, W. dactylidis and W. lonicerae. The Basidiomycota Agaricus flavicentrus, A. hanthanaensis, A. parvibicolor, A. sodalis, Cantharellus luteostipitatus, Lactarius atrobrunneus, L. politus, Phylloporia dependens and Russula cortinarioides are also introduced. Epitypifications or reference specimens are designated for Hapalocystis berkeleyi, Meliola tamarindi, Pallidocercospora acaciigena, Phaeosphaeria musae, Plenodomus agnitus, Psiloglonium colihuae, P. sasicola and Zasmidium musae while notes and/or new sequence data are provided for Annulohypoxylon leptascum, A. nitens, A. stygium, Biscogniauxia marginata, Fasciatispora nypae, Hypoxylon fendleri, H. monticulosum, Leptosphaeria doliolum, Microsphaeropsis olivacea, Neomicrothyrium, Paraleptosphaeria nitschkei, Phoma medicaginis and Saccotheciaceae. A full description of each species is provided with light micrographs (or drawings). Molecular data is provided for 90 taxa and used to generate phylogenetic trees to establish a natural classification for species.
Fungal Diversity | 2015
Kasun M. Thambugala; Kevin D. Hyde; Kazuaki Tanaka; Qing Tian; Dhanushka N. Wanasinghe; Hiran A. Ariyawansa; Subashini C. Jayasiri; Saranyaphat Boonmee; Erio Camporesi; Akira Hashimoto; Kazuyuki Hirayama; René K. Schumacher; Itthayakorn Promputtha; Zuo-Yi Liu
The genera Lophiostoma, Misturatosphaeria and several other allied taxa in Lophiostomataceae are revisited. Accounts of these taxa, including their history, morphology, and family placement, based on molecular phylogeny, are provided. Type or representative specimens of Lophiostoma and Misturatosphaeria were examined and fresh specimens were obtained from Germany, Italy, Japan and Thailand. A multi-gene phylogenetic analysis of the lophiostomataceous genera Floricola, Lophiostoma, Misturatosphaeria and related taxa is provided. Sixteen genera including Lophiostoma, Lophiohelichrysum, Dimorphiopsis, Platystomum and Vaginatispora, plus eleven newly introduced genera Biappendiculispora, Alpestrisphaeria, Capulatispora, Coelodictyosporium, Guttulispora, Lophiopoacea, Neotrematosphaeria, Paucispora, Pseudolophiostoma, Pseudoplatystomum and Sigarispora are accepted in Lophiostomataceae based on morphology and phylogeny. Lophiostoma caulium, Lophiostoma arundinis and Lophiostoma caudatum are accommodated in Sigarispora. Lophiostoma winteri and Lophiostoma fuckelii are placed in the genera Lophiopoacea and Vaginatispora respectively. Three Curreya species and Misturatosphaeria claviformis are transferred to a new genus, Neocurreya. All other Misturatosphaeria species except Misturatosphaeria aurantiinotata and M. uniseptata are separated in the new genera Asymmetrispora, Aurantiascoma, Magnibotryascoma, Pseudoaurantiascoma and Pseudomisturatosphaeria based on their morphological and phylogenetic affinities. Another new genus, Ramusculicola is introduced for a new collection from Thailand. These seven new genera are accommodated in a new family Floricolaceae, together with Floricola and Misturatosphaeria. Several massarina-like species clustered as a sister clade to Amorosia littoralis and are accommodated in a new genus Angustimassarina. A new family Amorosiaceae is proposed to accommodate the genera Amorosia and Angustimassarina. The putatively named species Decaisnella formosa and Thyridaria macrostomoides form a separate clade together with a new genus Lignosphaeria which is placed in Dothideomycetes, genera incertae sedis.
Fungal Diversity | 2015
Hiran A. Ariyawansa; Chayanard Phukhamsakda; Kasun M. Thambugala; Timur S. Bulgakov; Dhanushka N. Wanasinghe; Rekhani H. Perera; Ausana Mapook; Erio Camporesi; Ji-Chuan Kang; E. B. Gareth Jones; Ali H. Bahkali; Subashini C. Jayasiri; Kevin D. Hyde; Zuo-Yi Liu; Jayarama D. Bhat
Leptosphaeriaceae is a family in the order Pleosporales comprising economically important plant pathogens. Species may also be endophytes or saprobes on various host plants. In recent classifications Alternariaster, Leptosphaeria, Neophaeosphaeria, Paraleptosphaeria, Heterospora, Subplenodomus and Plenodomus were included in the family. The taxonomy of genera and species in Leptosphaeriaceae has been problematic due to the lack of understanding of the importance of morphological characters used to distinguish taxa, as well as the lack of reference strains. In order to establish evolutionary relationships and to provide a backbone tree for Leptosphaeria and allied genera, we sequenced the 18S nrDNA, 28S nrDNA, ITS, RPB2, TEF and ACT gene regions of Leptosphaeriaceae species and analysed this data. Multi-locus phylogenies together with morphology robustly support the monophyletic nature of Leptosphaeriaceae among the other families in Pleosporales, and the inclusion of the genera Alternariaster, Heterospora, Leptosphaeria, Paraleptosphaeria, Sphaerellopsis, Subplenodomus, Plenodomus and three novel genera Alloleptosphaeria, Neoleptosphaeria and Pseudoleptosphaeria. Five new species, Alternariaster centaureae-diffusae, Leptosphaeria cichorium, Paraleptosphaeria rubi, Plenodomus guttulatus and P. salviae are introduced. An account of sexual morph of Alternariaster centaureae-diffusae is provided, and the sexual morph of Leptosphaeria doliolum is re-described and illustrated using modern concepts from fresh collections. A novel family Neophaeosphaeriaceae is established to accommodate the genus Neophaeosphaeria and its species.
Fungal Diversity | 2015
Qing Tian; Jian Kui Liu; Kevin D. Hyde; Dhanushka N. Wanasinghe; Saranyaphat Boonmee; Subashini C. Jayasiri; Zong Long Luo; Joanne E. Taylor; Alan J. L. Phillips; Darbhe J. Bhat; Wen-Jing Li; Hiran A. Ariyawansa; Kasun M. Thambugala; E. B. Gareth Jones; Putarak Chomnunti; Ali H. Bahkali; Jianchu Xu; Erio Camporesi
The family Melanommataceae is widespread in temperate and subtropical regions and species invariably occur on twigs or bark of various woody plants in terrestrial, marine or freshwater habitats. In this paper, the type species of 26 genera of the family are re-described and illustrated. A multi-gene phylogeny based on maximum likelihood and Bayesian analyses of LSU, SSU, RPB2 and EF-1α sequence data of species of Melanommataceae is provided. The new genera, Muriformistrickeria, Pseudostrickeria and Thysanolaenae are introduced. Anomalemma is synonymized under Exosporiella. Acrocordiopsis, Astrosphaeriella, Beverwykella, Caryosporella, Sporidesmiella and Pseudotrichia are excluded from Melanommataceae based on molecular phylogenetic analyses. Presently, 20 genera are accepted in Melanommataceae. Based on the phylogenetic data, five new species, Byssosphaeria siamensis, Herpotrichia vaginatispora, Pseudostrickeria muriformis, Pseudostrickeria ononidis and Muriformistrickeria rubi, are introduced.
Fungal Diversity | 2018
Dinushani A. Daranagama; Kevin D. Hyde; Esteban Benjamin Sir; Kasun M. Thambugala; Qing Tian; Milan C. Samarakoon; Eric H. C. McKenzie; Subashini C. Jayasiri; Saowaluck Tibpromma; Jayarama D. Bhat; Xingzhong Liu; Marc Stadler
Species and generic recognition in the order Xylariales has been uncertain due to lack of molecular data from authentic cultures, as well as overlapping morphological characteristics. In this study, we revise the families Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae in Xylariales. Our study is based on DNA sequence data derived from living cultures of fresh isolates, data from GenBank and morphological observation of type and worldwide herbarium specimens. We also collected new specimens from Germany, Italy and Thailand. Combined analyses of ITS, LSU, RPB2 and β-tubulin sequence data were used to reconstruct the molecular phylogeny of the above families. Generic and familiar boundaries between these families are revised and presented in an updated combined phylogenetic tree. We accept six genera in Graphostromataceae, 19 genera in Hypoxylaceae, four in Lopadostomataceae and 37 genera in Xylariaceae. Five genera previously treated in Xylariaceae are placed in Amphisphaeriales genera incertae sedis and seven genera are placed in Xylariales genera incertae sedis. Two genera are placed in Sordariomycetes genera incertae sedis, while four genera are placed as Xylariomycetidae genera incertae sedis. Three genera are considered as doubtful. Barrmaelia and Cannonia, presently included in Xylariaceae are transferred to Diatrypaceae and Coniochaetales respectively, based on their morphology and phylogeny. Areolospora and Myconeesia are excluded from Xylariaceae and synonymized with Phaeosporis and Anthostomella respectively. Updated descriptions and illustrations are provided for all taxa with notes provided on each genus. Excluded and doubtful genera are listed with notes on their taxonomy and phylogeny. Taxonomic keys are provided for all revised families with morphological details for genera within the families.
Fungal Diversity | 2018
Dhanushka N. Wanasinghe; Chayanard Phukhamsakda; Kevin D. Hyde; Rajesh Jeewon; Hyang Burm Lee; E. B. Gareth Jones; Saowaluck Tibpromma; Danushka S. Tennakoon; Asha J. Dissanayake; Subashini C. Jayasiri; Yusufjon Gafforov; Erio Camporesi; Timur S. Bulgakov; Anusha H. Ekanayake; Rekhani H. Perera; Milan C. Samarakoon; Ishani D. Goonasekara; Ausana Mapook; Wen-Jing Li; Indunil C. Senanayake; Junfu Li; Chada Norphanphoun; Mingkwan Doilom; Ali H. Bahkali; Jianchu Xu; Peter E. Mortimer; Leif Tibell; Sanja Tibell; Samantha C. Karunarathna
AbstractThis paper is the seventh in the Fungal Diversity Notes series, where 131 taxa accommodated in 28 families are mainly described from Rosa (Rosaceae) and a few other hosts. Novel fungal taxa are described in the present study, including 17 new genera, 93 new species, four combinations, a sexual record for a species and new host records for 16 species. Bhatiellae, Cycasicola, Dactylidina, Embarria, Hawksworthiana, Italica, Melanocucurbitaria, Melanodiplodia, Monoseptella, Uzbekistanica, Neoconiothyrium, Neopaucispora, Pararoussoella, Paraxylaria, Marjia, Sporormurispora and Xenomassariosphaeria are introduced as new ascomycete genera. We also introduce the new species Absidia jindoensis, Alternaria doliconidium, A. hampshirensis, Angustimassarina rosarum, Astragalicola vasilyevae, Backusella locustae, Bartalinia rosicola, Bhatiellae rosae, Broomella rosae, Castanediella camelliae, Coelodictyosporium rosarum, Comoclathris rosae, C. rosarum, Comoclathris rosigena, Coniochaeta baysunika, C. rosae, Cycasicola goaensis, Dactylidina shoemakeri, Dematiopleospora donetzica, D. rosicola, D. salsolae, Diaporthe rosae, D. rosicola, Endoconidioma rosae-hissaricae, Epicoccum rosae, Hawksworthiana clematidicola, H. lonicerae, Italica achilleae, Keissleriella phragmiticola, K. rosacearum, K. rosae, K. rosarum, Lophiostoma rosae, Marjia tianschanica, M. uzbekistanica, Melanocucurbitaria uzbekistanica, Melanodiplodia tianschanica, Monoseptella rosae, Mucor fluvius, Muriformistrickeria rosae, Murilentithecium rosae, Neoascochyta rosicola, Neoconiothyrium rosae, Neopaucispora rosaecae, Neosetophoma rosarum, N. rosae, N. rosigena, Neostagonospora artemisiae, Ophiobolus artemisiicola, Paraconiothyrium rosae, Paraphaeosphaeria rosae, P. rosicola, Pararoussoella rosarum, Parathyridaria rosae, Paraxylaria rosacearum, Penicillium acidum, P. aquaticum, Phragmocamarosporium rosae, Pleospora rosae, P. rosae-caninae, Poaceicola agrostina, P. arundinicola, P. rosae, Populocrescentia ammophilae, P. rosae, Pseudocamarosporium pteleae, P. ulmi-minoris, Pseudocercospora rosae, Pseudopithomyces rosae, Pseudostrickeria rosae, Sclerostagonospora lathyri, S. rosae, S. rosicola, Seimatosporium rosigenum, S. rosicola, Seiridium rosarum, Setoseptoria arundelensis, S. englandensis, S. lulworthcovensis, Sigarispora agrostidis, S. caryophyllacearum, S. junci, S. medicaginicola, S. rosicola, S. scrophulariae, S. thymi, Sporormurispora atraphaxidis, S. pruni, Suttonomyces rosae, Umbelopsis sinsidoensis, Uzbekistanica rosae-hissaricae, U. yakutkhanika, Wojnowicia rosicola, Xenomassariosphaeria rosae. New host records are provided for Amandinea punctata, Angustimassarina quercicola, Diaporthe rhusicola, D. eres, D. foeniculina, D. rudis, Diplodia seriata, Dothiorella iberica, Lasiodiplodia theobromae, Lecidella elaeochroma, Muriformistrickeria rubi, Neofusicoccum australe, Paraphaeosphaeria michotii, Pleurophoma pleurospora, Sigarispora caulium and Teichospora rubriostiolata. The new combinations are Dactylidina dactylidis (=Allophaeosphaeria dactylidis), Embarria clematidis (=Allophaeosphaeria clematidis), Hawksworthiana alliariae (=Dematiopleospora alliariae) and Italica luzulae (=Dematiopleospora luzulae). This study also provides some insights into the diversity of fungi on Rosa species and especially those on Rosa spines that resulted in the characterisation of eight new genera, 45 new species, and nine new host records. We also collected taxa from Rosa stems and there was 31% (20/65) overlap with taxa found on stems with that on spines. Because of the limited and non-targeted sampling for comparison with collections from spines and stems of the same host and location, it is not possible to say that the fungi on spines of Rosa differ from those on stems. The study however, does illustrate how spines are interesting substrates with high fungal biodiversity. This may be because of their hard structure resulting in slow decay and hence are suitable substrates leading to fungal colonisation. All data presented herein are based on morphological examination of specimens, coupled with phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Fungal Diversity | 2017
Anusha H. Ekanayaka; Hiran A. Ariyawansa; Kevin D. Hyde; E. B. G. Jones; Dinushani A. Daranagama; Alan J. L. Phillips; Singang Hongsanan; Subashini C. Jayasiri; Qi Zhao
AbstractDiscomycetes are an artificial grouping of apothecia-producing fungi in the phylum Ascomycota. Molecular-based studies have revealed that the discomycetes can be found among ten classes of Ascomycota. The classification of discomycetes has been a major challenge due to the lack of a clear understanding of the important morphological characters, as well as a lack of reference strains. In this review, we provide a historical perspective of discomycetes, notes on their morphology (including both asexual and sexual morphs), ecology and importance, an outline of discomycete families and a synoptical cladogram of currently accepted families in Ascomycota showing their systematic position. We also calculated evolutionary divergence times for major discomycetous taxa based on phylogenetic relationships using a combined LSU, SSU and RPB2 data set from 175 strains and fossil data. Our results confirm that discomycetes are found in two major subphyla of the Ascomycota: Taphrinomycotina and Pezizomycotina. The taxonomic placement of major discomycete taxa is briefly discussed. The most basal group of discomycetes is the class Neolectomycetes, which diverged from other Taphrinomycotina around 417 MYA (216–572), and the most derived group of discomycetes, the class Lecanoromycetes, diverged from Eurotiomycetes around 340 MYA (282–414). Further clarifications based on type specimens, designation of epitypes or reference specimens from fresh collections, and multi-gene analyses are needed to determine the taxonomic arrangement of many discomycetes.
Cryptogamie Mycologie | 2017
Subashini C. Jayasiri; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansae; Ali H. Bahkali; Abdallah M. Elgorban; Ji-Chuan Kang
Abstract The family Gloniaceae is represented by the genera Glonium (plant saprobes) and Cenococcum (ectomycorrhizae). This work adds to the knowledge of the family, by introducing a new taxon from dead scales of pine cones collected on the ground in Chiang Mai Province, Thailand. Analysis of a combined LSU, SSU, RPB2 and TEF1 sequence dataset matrix placed it in Gloniaceae and Purpurepithecium murisporum gen. et sp. nov. is introduced to accommodate the new taxon. The genus is characterized by erumpent to superficial, navicular hysterothecia, with a prominent longitudinal slit, branched pseudoparaphyses in a gel matrix, with a purple pigmented epithecium, hyaline to dark brown muriform ascospores and a Psiloglonium stygium-like asexual morph which is produced in culture. The new taxon is illustrated and compared with similar genera.
Fungal Diversity | 2017
Nalin N. Wijayawardene; Kevin D. Hyde; Kunhiraman C. Rajeshkumar; David L. Hawksworth; Hugo Madrid; Paul M. Kirk; Uwe Braun; Rajshree V. Singh; Pedro W. Crous; Martin Kukwa; Robert Lücking; Cletus P. Kurtzman; Andrey Yurkov; Danny Haelewaters; André Aptroot; H. Thorsten Lumbsch; Einar Timdal; Damien Ertz; Javier Etayo; Alan J. L. Phillips; Johannes Z. Groenewald; Moslem Papizadeh; Laura Selbmann; Monika C. Dayarathne; Gothamie Weerakoon; E. B. Gareth Jones; Satinee Suetrong; Qing Tian; Rafael F. Castañeda-Ruiz; Ali H. Bahkali