Sun Kak Hwang
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sun Kak Hwang.
Nature Communications | 2014
Richard Hahnkee Kim; Hae Jin Kim; Insung Bae; Sun Kak Hwang; Dhinesh Babu Velusamy; Suk Man Cho; Kazuto Takaishi; Tsuyoshi Muto; Daisuke Hashizume; Masanobu Uchiyama; Pascal André; Fabrice Mathevet; Benoît Heinrich; Tetsuya Aoyama; Dae-Eun Kim; Hyungsuk Lee; Jean-Charles Ribierre; Cheolmin Park
High-performance non-volatile memory that can operate under various mechanical deformations such as bending and folding is in great demand for the future smart wearable and foldable electronics. Here we demonstrate non-volatile solution-processed ferroelectric organic field-effect transistor memories operating in p- and n-type dual mode, with excellent mechanical flexibility. Our devices contain a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin insulator layer and use a quinoidal oligothiophene derivative (QQT(CN)4) as organic semiconductor. Our dual-mode field-effect devices are highly reliable with data retention and endurance of >6,000 s and 100 cycles, respectively, even after 1,000 bending cycles at both extreme bending radii as low as 500 μm and with sharp folding involving inelastic deformation of the device. Nano-indentation and nano scratch studies are performed to characterize the mechanical properties of organic layers and understand the crucial role played by QQT(CN)4 on the mechanical flexibility of our devices.
Advanced Materials | 2012
Sun Kak Hwang; Insung Bae; Richard Hahnkee Kim; Cheolmin Park
A flexible field-effect transistor with a poly(3-hexylthiophene) (P3HT) active channel and a ferroelectric poly(vinlyidene fluoride-co-trifluoro ethylene) (PVDF-TrFE) insulator exhibits gate-voltage-controllable multilevel non-volatile memory characteristics with highly reliable data retention and endurance.
Small | 2014
Sun Kak Hwang; Sung-Yong Min; Insung Bae; Suk Man Cho; Kang Lib Kim; Tae-Woo Lee; Cheolmin Park
One-dimensional nanowires (NWs) have been extensively examined for numerous potential nano-electronic device applications such as transistors, sensors, memories, and photodetectors. The ferroelectric-gate field effect transistors (Fe-FETs) with semiconducting NWs in particular in combination with ferroelectric polymers as gate insulating layers have attracted great attention because of their potential in high density memory integration. However, most of the devices still suffer from low yield of devices mainly due to the ill-control of the location of NWs on a substrate. NWs randomly deposited on a substrate from solution-dispersed droplet made it extremely difficult to fabricate arrays of NW Fe-FETs. Moreover, rigid inorganic NWs were rarely applicable for flexible non-volatile memories. Here, we present the NW Fe-FETs with position-addressable polymer semiconducting NWs. Polymer NWs precisely controlled in both location and number between source and drain electrode were achieved by direct electrohydrodynamic NW printing. The polymer NW Fe-FETs with a ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) exhibited non-volatile ON/OFF current margin at zero gate voltage of approximately 10(2) with time-dependent data retention and read/write endurance of more than 10(4) seconds and 10(2) cycles, respectively. Furthermore, our device showed characteristic bistable current hysteresis curves when being deformed with various bending radii and multiple bending cycles over 1000 times.
ACS Applied Materials & Interfaces | 2015
Wei Wang; Sun Kak Hwang; Kang Lib Kim; Ju Han Lee; Suk Man Cho; Cheol-Min Park
The core components of a floating-gate organic thin-film transistor nonvolatile memory (OTFT-NVM) include the semiconducting channel layer, tunneling layer, floating-gate layer, and blocking layer, besides three terminal electrodes. In this study, we demonstrated OTFT-NVMs with all four constituent layers made of polymers based on consecutive spin-coating. Ambipolar charges injected and trapped in a polymer electret charge-controlling layer upon gate program and erase field successfully allowed for reliable bistable channel current levels at zero gate voltage. We have observed that the memory performance, in particular the reliability of a device, significantly depends upon the thickness of both blocking and tunneling layers, and with an optimized layer thickness and materials selection, our device exhibits a memory window of 15.4 V, on/off current ratio of 2 × 10(4), read and write endurance cycles over 100, and time-dependent data retention of 10(8) s, even when fabricated on a mechanically flexible plastic substrate.
Nano Letters | 2016
Kang Lib Kim; Wonho Lee; Sun Kak Hwang; Se Hun Joo; Suk Man Cho; Giyoung Song; Sung Hwan Cho; Beomjin Jeong; Ihn Hwang; Jong Hyun Ahn; Young Jun Yu; Tae Joo Shin; Sang Kyu Kwak; Seok Ju Kang; Cheol-Min Park
Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.
Journal of Materials Chemistry | 2012
Dhinesh Babu Velusamy; Sun Kak Hwang; Richard Hahnkee Kim; Giyoung Song; Sung Hwan Cho; Insung Bae; Cheolmin Park
We present a simple, but robust route to efficiently disperse very high rGO concentrations of chemically reduced graphene oxides (rGOs) in various non-polar solvents and polymers. Our method is based on the noncovalent, nondestructive modification of rGOs with a conjugated block copolymer, poly(styrene-block-paraphenylene) (PS-b-PPP). The dispersion of rGOs occurred because PPP blocks strongly adhered to basal planes of rGOs by π–π interactions, while PS blocks provided good solubility in a variety of non-polar environments. The resulting PS-b-PPP modified rGOs (PMrGOs) showed excellent solubility and dispersion stability that was dependent on the quality of the solvent with respect to the PS blocks. In particular, extremely high solubility of the rGOs, as high as 1.5 mg mL−1, was achieved in THF. Our PMrGOs and their solution blends with other non-polymer polymers such as PS, poly(methylmethacrylate) and poly(isoprene-block-styrene) were conveniently spin-coated on various substrates, giving rise to ultra-thin nanohybrid films where the amount of rGO can be systematically controlled. The scalable and simple strategy employed for fabricating rGO nanohybrid films allowed us to assemble a high performance non-volatile resistive polymer memory device in which the bias-dependent trapping and de-trapping of injected charges were efficiently manipulated on the surface of highly dispersed rGO sheets in the nanohybrid.
ACS Nano | 2014
Young Hoon Kim; Kyungyun Kook; Sun Kak Hwang; Cheolmin Park; Jinhan Cho
We introduce an adsorption mechanism for a layer-by-layer (LbL) assembly (i.e., a ligand addition-induced LbL assembly) and demonstrate that the (polymer/perovskite nanoparticle (NP))n nanocomposite films based on the ligand addition LbL exhibit ferroelectric and resistive switching properties. Oleic acid (OA)-stabilized BaTiO3 NPs (OA-BTO NPs) with a size of approximately 8 nm were LbL-assembled with amine-functionalized dendrimers (NH2-dendrimers) using the high affinity between NH2 moieties and Ti ions. The ferroelectric properties of the (NH2-dendrimer/OA-BTO NP)n multilayers were generated by the Ti disorder in the OA-BTO NP unit cell despite the use of sub-10 nm OA-BTO NPs (i.e., OA-BTO NPs), which are near the critical size for ferroelectric properties. Additionally, the (NH2-dendrimer/OA-BTO NP)n multilayers sandwiched between the bottom (platinum) and top (silver or tungsten) electrodes exhibited a resistive switching memory at a relatively low operating voltage below 2 V with a switching speed of approximately 100 ns and an ON/OFF current ratio of approximately 10(4). Furthermore, the ferroelectric and resistive switching properties could be further improved by controlling the bilayer number (n). We believe that our approach can provide a basis for designing and exploiting multifunctional memory electronics based on a variety of perovskite NPs with ferroelectric properties.
ACS Applied Materials & Interfaces | 2014
Sun Kak Hwang; Tae Joon Park; Kang Lib Kim; Suk Man Cho; Beom Jin Jeong; Cheol-Min Park
As one of the most emerging next-generation nonvolatile memories, one-transistor (1T)-type nonvolatile memories are of great attention due to their excellent memory performance and simple device architecture suitable for high density memory arrays. In particular, organic 1T-type memories containing both organic semiconductors and insulators are further beneficial because of their mechanical flexibility with low cost fabrication. Here, we demonstrate a new flexible organic 1T-type memory operating at low voltage. The low voltage operation of a memory less than 10 V was obtained by employing a polymer gate insulator solution blended with ionic liquid as a charge storage layer. Ionic liquid homogeneously dissolved in a thin poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) film gave rise to low voltage operation of a device due to its high capacitance. Simultaneously, stable charge trapping of either anions or cations efficiently occurred in the polymer matrix, dependent upon gate bias. Optimization of ionic liquid in PVDF-TrFE thus led to an air-stable and mechanically flexible organic 1T-type nonvolatile memory operating at programming voltage of ±7 V with large ON/OFF current margin of approximately 10(3), reliable time-dependent data retention of more than 10(4) seconds, and write/read endurance cycles of 80.
Small | 2013
Sun Kak Hwang; Jae Ryung Choi; Insung Bae; Ihn Hwang; Suk Man Cho; June Huh; Cheolmin Park
Printable non-volatile polymer memories are fabricated with solution-processed nanocomposite films of poly(styrene-block-paraphenylene) (PS-b-PPP) and single-wall carbon nanotubes (SWNTs). The devices show stable data retention at high temperatures of up to 100 °C without significant performance degradation due to the strong, non-destructive, and isomorphic π-π interactions between the SWNTs and PPP block.
ACS Nano | 2015
Tae Joon Park; Sun Kak Hwang; Sungmin Park; Sung Hwan Cho; Tae Hyun Park; Beomjin Jeong; Han Sol Kang; Du Yeol Ryu; June Huh; Edwin L. Thomas; Cheol-Min Park
One-dimensional photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid (IL) swollen block copolymer (BCP) films. Placement of a polymer/ionic liquid film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2-vinylpyridine) (PS-b-QP2VP) copolymer SC film allowed the development of red (R), green (G), and blue (B) full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3 to +6 V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.