Sunee Korbsrisate
Mahidol University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sunee Korbsrisate.
Journal of Bacteriology | 2005
Supaporn Suparak; Wannapa Kespichayawattana; Ashraful Haque; Anna Easton; Suwat Damnin; Ganjana Lertmemongkolchai; Gregory J. Bancroft; Sunee Korbsrisate
Here we have assessed the role of a type III translocator protein, BipB, in the cell biology and virulence of Burkholderia pseudomallei. Genetic inactivation of bipB reduced multinucleated giant cell formation, cell-to-cell spreading of bacteria, and induction of apoptosis of J774A.1 macrophages. The bipB mutant was also significantly attenuated following intranasal challenge of BALB/c mice, whereas virulence was fully restored by complementation with a functional bipB gene. Burkholderia pseudomallei, the etiological agent of melioidosis in humans and animals, is a gram-negative bacterium. Melioidosis is endemic in southeast Asia and tropical Australia and has been reported sporadically elsewhere (6). Currently, there is no vaccine against melioidosis. Uniquely among intracellular bacterial pathogens, B. pseudomallei induces host cell fusion leading to multinucleated giant cell (MNGC) formation in tissue culture models of infection (14). This novel phenotype may be relevant to pathogenesis, since granuloma formation and generation of MNGC are also found in tissues of humans with melioidosis (23). In addition to inducing MNGC formation, B. pseudomallei is able to spread from cell to cell and induce apoptotic death in infected host cells (14). The molecular mechanisms of these pathogenic characteristics have not been elucidated. Analysis of the B. pseudomallei genome and several other studies have demonstrated the presence of a type III secretion system (TTSS) (for reviews, see references 3, 12, 17, 20, and 22). A knockout mutant of B. pseudomallei lacking a functional bipD gene, a homologue of Salmonella enterica serovar Typhimurium sipD, on the TTSS3/bsa cluster of TTSS exhibited reduced replication in murine macrophage-like cells (20), was significantly attenuated in BALB/c mice and gave partial protection against subsequent challenge with wild-type B. pseudomallei (19). These data correlated with the recent report that the TTSS3/bsa cluster is required for the pathogenicity of B. pseudomallei (21). In addition to BipD, B. pseudomallei BipB and BipC (46 and 30% amino acid identity to Salmonella SipB and SipC, respectively) have been identified in the TTSS3/bsa cluster (3). Here, we report on the role of BipB in the pathogenesis of infection with B. pseudomallei. With Salmonella organisms, purified SipB integrates into artificial membranes and induces liposome fusion (10), and it is required for inducing apoptosis in murine macrophages (11). By analogy with SipB, therefore, we investigated the role of BipB for MNGC formation, cell-to-cell spreading, and induction of apoptosis in infected host cells. We also examined the virulence of a B. pseudomallei bipB mutant in a murine model of melioidosis.
Infection and Immunity | 2012
Donporn Riyapa; Surachat Buddhisa; Sunee Korbsrisate; Jon Cuccui; Brendan W. Wren; Mark P. Stevens; Manabu Ato; Ganjana Lertmemongkolchai
ABSTRACT Burkholderia pseudomallei is the causative pathogen of melioidosis, of which a major predisposing factor is diabetes mellitus. Polymorphonuclear neutrophils (PMNs) kill microbes extracellularly by the release of neutrophil extracellular traps (NETs). PMNs play a key role in the control of melioidosis, but the involvement of NETs in killing of B. pseudomallei remains obscure. Here, we showed that bactericidal NETs were released from human PMNs in response to B. pseudomallei in a dose- and time-dependent manner. B. pseudomallei-induced NET formation required NADPH oxidase activation but not phosphatidylinositol-3 kinase, mitogen-activated protein kinases, or Src family kinase signaling pathways. B. pseudomallei mutants defective in the virulence-associated Bsa type III protein secretion system (T3SS) or capsular polysaccharide I (CPS-I) induced elevated levels of NETs. NET induction by such mutants was associated with increased bacterial killing, phagocytosis, and oxidative burst by PMNs. Taken together the data imply that T3SS and the capsule may play a role in evading the induction of NETs. Importantly, PMNs from diabetic subjects released NETs at a lower level than PMNs from healthy subjects. Modulation of NET formation may therefore be associated with the pathogenesis and control of melioidosis.
PLOS Genetics | 2013
Wen Fong Ooi; Catherine Ong; Tannistha Nandi; Jason F. Kreisberg; Hui Hoon Chua; Guangwen Sun; Yahua Chen; Claudia Mueller; Laura Conejero; Majid Eshaghi; Roy Moh Lik Ang; Jianhua Liu; Bruno W. S. Sobral; Sunee Korbsrisate; Yunn Hwen Gan; Richard W. Titball; Gregory J. Bancroft; Eric Valade; Patrick Tan
Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed to >80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp chromosomes exhibited dramatically different transcriptional landscapes — Chr 1 genes were highly and constitutively expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression programs, and used the condition compendium to elucidate key biological processes associated with two complex pathogen phenotypes — quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the Bp virulence machinery can be activated by specific in vitro cues provides insights into Bps capacity as an “accidental pathogen”, where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its ability to colonize human hosts.
Archives of Microbiology | 2008
Veerachat Muangsombut; Supaporn Suparak; Pornpan Pumirat; Suwat Damnin; Paiboon Vattanaviboon; Visith Thongboonkerd; Sunee Korbsrisate
Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B.pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed. This bsaQ mutation caused a marked decrease in secretion of BopE effector and BipD translocator proteins into culture supernatant. The B.pseudomalleibsaQ mutant also exhibited decreased efficiencies of plaque formation, invasion into non-phagocytic cells and multinucleated giant cell (MNGC) development in a J774A.1 macrophage cell line. Co-localization of the bacteria and lysosome-associated membrane glycoprotein-1 (LAMP-1) containing vesicles suggested that defects in MNGC formation may result from the delayed ability of this B.pseudomallei mutant to escape from the vacuoles of macrophages.
Journal of Bacteriology | 2011
Chayada Sitthidet; Sunee Korbsrisate; Abigail N. Layton; Terence R. Field; Mark P. Stevens; Joanne M. Stevens
Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP₇ proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei.
BMC Microbiology | 2010
Sarunporn Tandhavanant; Aunchalee Thanwisai; Direk Limmathurotsakul; Sunee Korbsrisate; Nicholas P. J. Day; Sharon J. Peacock; Narisara Chantratita
BackgroundPrimary diagnostic cultures from patients with melioidosis demonstrate variation in colony morphology of the causative organism, Burkholderia pseudomallei. Variable morphology is associated with changes in the expression of a range of putative virulence factors. This study investigated the effect of B. pseudomallei colony variation on survival in the human macrophage cell line U937 and under laboratory conditions simulating conditions within the macrophage milieu. Isogenic colony morphology types II and III were generated from 5 parental type I B. pseudomallei isolates using nutritional limitation. Survival of types II and III were compared with type I for all assays.ResultsMorphotype was associated with survival in the presence of H2O2 and antimicrobial peptide LL-37, but not with susceptibility to acid, acidified sodium nitrite, or resistance to lysozyme, lactoferrin, human neutrophil peptide-1 or human beta defensin-2. Incubation under anaerobic conditions was a strong driver for switching of type III to an alternative morphotype. Differences were noted in the survival and replication of the three types following uptake by human macrophages, but marked strain-to strain-variability was observed. Uptake of type III alone was associated with colony morphology switching.ConclusionsMorphotype is associated with phenotypes that alter the ability of B. pseudomallei to survive in adverse environmental conditions.
Journal of Clinical Microbiology | 2008
Chayada Sitthidet; Joanne M. Stevens; Narisara Chantratita; Bart J. Currie; Sharon J. Peacock; Sunee Korbsrisate; Mark P. Stevens
ABSTRACT Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA. We report a high degree of conservation of bimA in 99 B. pseudomallei isolates from the area of endemicity. A geographically restricted subset of B. pseudomallei isolates harbored a B. mallei-like bimA allele (12.1%), confounding a differential diagnostic test based on amplification of species-specific bimA regions.
Journal of Proteomics | 2012
Narisara Chantratita; Sarunporn Tandhavanant; Chanthiwa Wikraiphat; Lily A. Trunck; Drew A. Rholl; Aunchalee Thanwisai; Natnaree Saiprom; Direk Limmathurotsakul; Sunee Korbsrisate; Nicholas P. J. Day; Herbert P. Schweizer; Sharon J. Peacock
Colony morphology variation of Burkholderia pseudomallei is a notable feature of a proportion of primary clinical cultures from patients with melioidosis. Here, we examined the hypothesis that colony morphology switching results in phenotypic changes associated with enhanced survival under adverse conditions. We generated isogenic colony morphology types II and III from B. pseudomallei strain 153 type I, and compared their protein expression profiles using 2D gel electrophoresis. Numerous proteins were differentially expressed, the most prominent of which were flagellin, arginine deiminase (AD) and carbamate kinase (CK), which were over-expressed in isogenic types II and III compared with parental type I. AD and CK (encoded by arcA and arcC) are components of the arginine deiminase system (ADS) which facilitates acid tolerance. Reverse transcriptase PCR of arcA and arcC mRNA expression confirmed the proteomic results. Transcripts of parental type I strain 153 arcA and arcC were increased in the presence of arginine, in a low oxygen concentration and in acid. Comparison of wild type with arcA and arcC defective mutants demonstrated that the B. pseudomallei ADS was associated with survival in acid, but did not appear to play a role in intracellular survival or replication within the mouse macrophage cell line J774A.1. These data provide novel insights into proteomic alterations that occur during the complex process of morphotype switching, and lend support to the idea that this is associated with a fitness advantage in vivo.
Biochimica et Biophysica Acta | 2009
Pornpan Pumirat; Putita Saetun; Supachok Sinchaikul; Shui-Tein Chen; Sunee Korbsrisate; Visith Thongboonkerd
Burkholderia pseudomallei is a saprophyte found in soil and water. It is a difficult microorganism to kill and can survive in these environments for many years. Mechanisms for its adaptive response to environmental changes remain largely unknown. We performed a proteomics study to examine alterations in secreted proteins (secretome) under a salt stress (with 150 mM NaCl) compared to the normal cultured condition in LB broth. The culture supernatants were filtrated and precipitated with 50% ethanol. The isolated proteins were recovered, separated with 2-D PAGE, and visualized with SYPRO Ruby stain (n=5 gels for each group). Differentially expressed protein spots were identified by Q-TOF MS and/or MS/MS analyses. A total of 42 protein spots representing 37 unique proteins were identified as the altered proteins during the salt stress, including metabolic enzymes, transcription/translation regulators, potential virulence factors, chaperones, phage capsid proteins, drug resistance protein, solute transport regulator, and hypothetical proteins. The presence of secreted GroEL only after NaCl exposure was confirmed by Western blot analysis. The increased level (19-fold) of a beta-lactamase-like protein suggested that the NaCl-exposed bacterium might resist to beta-lactam antibiotics. Functional analysis revealed that the NaCl-exposed bacterium had significantly greater survival rate after a treatment with ceftazidime. Our study provided the first dataset of the secretome of B. pseudomallei and its alterations, which may lead to novel insights into adaptive response of B. pseudomallei during the salt stress.
Journal of Bacteriology | 2010
Chayada Sitthidet; Joanne M. Stevens; Terence R. Field; Abigail N. Layton; Sunee Korbsrisate; Mark P. Stevens
Burkholderia species use BimA for intracellular actin-based motility. Uniquely, Burkholderia thailandensis BimA harbors a central and acidic (CA) domain. The CA domain was required for actin-based motility, binding to the cellular Arp2/3 complex, and Arp2/3-dependent polymerization of actin monomers. Our data reveal distinct strategies for actin-based motility among Burkholderia species.