Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Veerachat Muangsombut is active.

Publication


Featured researches published by Veerachat Muangsombut.


Archives of Microbiology | 2008

Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles

Veerachat Muangsombut; Supaporn Suparak; Pornpan Pumirat; Suwat Damnin; Paiboon Vattanaviboon; Visith Thongboonkerd; Sunee Korbsrisate

Burkholderia pseudomallei, an infectious Gram-negative bacterium, is the causative pathogen of melioidosis. In the present study, a B.pseudomallei strain with mutation in the bsaQ gene, encoding a structural component of the type III secretion system (T3SS), was constructed. This bsaQ mutation caused a marked decrease in secretion of BopE effector and BipD translocator proteins into culture supernatant. The B.pseudomalleibsaQ mutant also exhibited decreased efficiencies of plaque formation, invasion into non-phagocytic cells and multinucleated giant cell (MNGC) development in a J774A.1 macrophage cell line. Co-localization of the bacteria and lysosome-associated membrane glycoprotein-1 (LAMP-1) containing vesicles suggested that defects in MNGC formation may result from the delayed ability of this B.pseudomallei mutant to escape from the vacuoles of macrophages.


BMC Microbiology | 2010

Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

Pornpan Pumirat; Jon Cuccui; Richard A. Stabler; Joanne M. Stevens; Veerachat Muangsombut; Ekapot Singsuksawat; Mark P. Stevens; Brendan W. Wren; Sunee Korbsrisate

BackgroundBurkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis.ResultsTranscriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system.ConclusionsB. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.


Fems Microbiology Letters | 2011

BopC is a type III secreted effector protein of Burkholderia pseudomallei

Sunsiree Muangman; Sunee Korbsrisate; Veerachat Muangsombut; Varintip Srinon; Natalie R. Lazar Adler; Gunnar N. Schroeder; Gad Frankel; Edouard E. Galyov

Burkholderia pseudomallei, the causative agent of melioidosis, exploits the Bsa type III secretion system (T3SS) to deliver effector proteins into host cells. These effectors manipulate host cell functions; thus, contributing to the ability of the bacteria to evade the immune response and cause disease. Only two Bsa-secreted effectors have been conclusively identified to date. Here, we report the identification of the third B. pseudomallei type III secreted effector protein, designated BopC. BopC is encoded by the bpss1516 gene abutting bpss1517, which encodes its putative chaperone. The genes are located in the close proximity to the bsa T3SS gene cluster of B. pseudomallei K96243 (Fig. 1). BopC was secreted into culture supernatant by the wild-type B. pseudomallei strain, but its secretion was abolished in the bsaZ T3SS mutant. Using pull down and co-purification assays, we confirmed that BopC interacts with its putative chaperone, BPSS1517, in vitro. Furthermore, the first 20 N-terminal amino acids of BopC were found to be sufficient to mediate the T3SS-dependent translocation of a reporter protein from a heterologous enteropathogenic Escherichia coli host into mammalian cells. Finally, bopC mutant was found to be less invasive than the wild-type strain in the epithelial cells.


Microbes and Infection | 2011

Burkholderia pseudomallei-induced cell fusion in U937 macrophages can be inhibited by monoclonal antibodies against host cell surface molecules

Supaporn Suparak; Veerachat Muangsombut; Donporn Riyapa; Joanne M. Stevens; Mark P. Stevens; Ganjana Lertmemongkolchai; Sunee Korbsrisate

Burkholderia pseudomallei induces the formation of multinucleated giant cells in cell monolayers. After infection of human macrophage-like U937 cells with B. pseudomallei, addition of monoclonal antibodies against integrin-associated protein (CD47), E-selectin (CD62E), a fusion regulatory protein (CD98), and E-cadherin (CD324) suppressed multinucleated giant cells in a concentration-dependent manner while monoclonal antibodies against other surface molecules did not inhibit fusion despite binding to the cell surface. Flow cytometric analysis showed increased expression of CD47 and CD98, but not CD62E and CD324, upon B. pseudomallei infection. Our data suggest the involvement of specific cellular factors in the process of B. pseudomallei-induced fusion.


PLOS ONE | 2014

Analysis of the prevalence, secretion and function of a cell cycle-inhibiting factor in the melioidosis pathogen Burkholderia pseudomallei

Pornpan Pumirat; Charles W. Vander Broek; Niramol Juntawieng; Veerachat Muangsombut; Pattarachai Kiratisin; Kovit Pattanapanyasat; Joanne M. Stevens; Mark P. Stevens; Sunee Korbsrisate

Enteropathogenic and enterohaemorrhagic Escherichia coli express a cell cycle-inhibiting factor (Cif), that is injected into host cells via a Type III secretion system (T3SS) leading to arrest of cell division, delayed apoptosis and cytoskeletal rearrangements. A homologue of Cif has been identified in Burkholderia pseudomallei (CHBP; Cif homologue in B. pseudomallei; BPSS1385), which shares catalytic activity, but its prevalence, secretion and function are ill-defined. Among 43 available B. pseudomallei genome sequences, 33 genomes (76.7%) harbor the gene encoding CHBP. Western blot analysis using antiserum raised to a synthetic CHBP peptide detected CHBP in 46.6% (7/15) of clinical B. pseudomallei isolates from the endemic area. Secretion of CHBP into bacterial culture supernatant could not be detected under conditions where a known effector (BopE) was secreted in a manner dependent on the Bsa T3SS. In contrast, CHBP could be detected in U937 cells infected with B. pseudomallei by immunofluorescence microscopy and Western blotting in a manner dependent on bsaQ. Unlike E. coli Cif, CHBP was localized within the cytoplasm of B. pseudomallei-infected cells. A B. pseudomallei chbP insertion mutant showed a significant reduction in cytotoxicity and plaque formation compared to the wild-type strain that could be restored by plasmid-mediated trans-complementation. However, there was no defect in actin-based motility or multinucleated giant cell formation by the chbP mutant. The data suggest that the level or timing of CHBP secretion differs from a known Bsa-secreted effector and that CHBP is required for selected virulence-associated phenotypes in vitro.


Journal of Microbiology | 2013

Comparative assessment of the intracellular survival of the Burkholderia pseudomallei bopC mutant

Varintip Srinon; Sunsiree Muangman; Nithima Imyaem; Veerachat Muangsombut; Natalie R. Lazar Adler; Edouard E. Galyov; Sunee Korbsrisate

Burkholderia pseudomallei, the causative agent of melioidosis, is a Gram-negative saprophytic bacterium capable of surviving within phagocytic cells. To assess the role of BopC (a type III secreted effector protein) in the pathogenesis of B. pseudomallei, a B. pseudomallei bopC mutant was used to infect J774A.1 macrophage-like cells. The bopC mutant showed significantly reduced intracellular survival in infected macrophages compared to wild-type B. pseudomallei. In addition, the bopC mutant displayed delayed escape from endocytic vesicles compared with the wild-type strain. This indicates that BopC is important, and at least in part, needed for intracellular survival of B. pseudomallei.


Journal of Microbiology | 2010

Effect of acidic pH on the invasion efficiency and the type III secretion system of Burkholderia thailandensis

Siroj Jitprasutwit; Wisansanee Thaewpia; Veerachat Muangsombut; Aroonlug Lulitanond; Chanvit Leelayuwat; Ganjana Lertmemongkolchai; Sunee Korbsrisate

Burkholderia thailandensis is a close relative of Burkholderia pseudomallei. These organisms are very similar, but B. thailandensis is far less virulent than B. pseudomallei. Nucleotide sequencing and analysis of 14 B. thailandensis isolates revealed variation in the regions coding for the type III secreted BipD protein. The degree of B. thailandensis BipD sequence variation was greater than that found in B. pseudomallei. Western blot analysis indicated that, unlike B. pseudomallei, B. thailandensis type III secreted proteins including BipD and BopE could not be detected in the supernatant of culture medium unless induced by acidic conditions. In addition, culturing B. thailandensis under acidic growth conditions (pH 4.5) can induce the ability of this bacterium to invade human respiratory epithelial cells A549. The identification of an environmental stimulus that increases the invasion capability of B. thailandensis invasion is of value for those who would like to use this bacterium as a model to study B. pseudomallei virulence.


PLOS Neglected Tropical Diseases | 2016

Analyses of the Distribution Patterns of Burkholderia pseudomallei and Associated Phages in Soil Samples in Thailand Suggest That Phage Presence Reduces the Frequency of Bacterial Isolation.

Patoo Withatanung; Narisara Chantratita; Veerachat Muangsombut; Natnaree Saiprom; Ganjana Lertmemongkolchai; Jochen Klumpp; Martha R. J. Clokie; Edouard E. Galyov; Sunee Korbsrisate

Background Burkholderia pseudomallei is a soil saprophytic bacterium that causes melioidosis. The infection occurs through cutaneous inoculation, inhalation or ingestion. Bacteriophages (phages) in the same ecosystem may significantly impact the biology of this bacterium in the environment, and in their culturability in the laboratory. Methods/Principal Findings The soil samples were analysed for the presence of bacteria using culture methods, and for phages using plaque assays on B. pseudomallei strain 1106a lawns. Of the 86 soil samples collected from northeastern Thailand, B. pseudomallei was cultured from 23 (26.7%) samples; no phage capable of infecting B. pseudomallei was detected in these samples. In contrast, phages capable of infecting B. pseudomallei, but no bacteria, were present in 10 (11.6%) samples. B. pseudomallei and their phages were co-isolated from only 3 (3.5%) of soil samples. Since phage capable of infecting B. pseudomallei could not have appeared in the samples without the prior presence of bacteria, or exposure to bacteria nearby, our data suggest that all phage-positive/bacteria-negative samples have had B. pseudomallei in or in a close proximity to them. Taken together, these findings indicate that the presence of phages may influence the success of B. pseudomallei isolation. Transmission electron microscopy revealed that the isolated phages are podoviruses. The temperate phages residing in soil-isolated strains of B. pseudomallei that were resistant to the dominant soil borne phages could be induced by mitomycin C. These induced-temperate phages were closely related, but not identical, to the more dominant soil-isolated phage type. Conclusion/Significance The presence of podoviruses capable of infecting B. pseudomallei may affect the success of the pathogen isolation from the soil. The currently used culture-based methods of B. pseudomallei isolation appear to under-estimate the bacterial abundance. The detection of phage capable of infecting B. pseudomallei from environmental samples could be a useful preliminary test to indicate the likely presence of B. pseudomallei in environmental samples.


Fems Immunology and Medical Microbiology | 2014

Growth, motility and resistance to oxidative stress of the melioidosis pathogen Burkholderia pseudomallei are enhanced by epinephrine

Narin Intarak; Veerachat Muangsombut; Paiboon Vattanaviboon; Mark P. Stevens; Sunee Korbsrisate

Burkholderia pseudomallei causes melioidosis, a severe invasive disease endemic in South-East Asia and Northern Australia. Bacterial pathogens of several genera have been reported to be able to sense and respond to the stress-related catecholamine hormone epinephrine. Here, we report that epinephrine induces growth of B. pseudomallei in minimal serum-rich medium and heat-inactivated whole human serum and enhances bacterial motility, transcription of flagellar genes and flagellin synthesis. The effect of epinephrine on motility, but not bacterial growth, could be partially reversed by the alpha-adrenergic receptor antagonist phentolamine. Epinephrine also altered the transcription of iron-regulated genes encoding superoxide dismutase (sodB) and the malleobactin receptor (fmtA). Consistent with induction of sodB expression, epinephrine-treated B. pseudomallei exhibited increased resistance to superoxide. Epinephrine treatment did not stimulate Type III secretion via the virulence-associated Bsa apparatus or the ability of B. pseudomallei to invade epithelial cells in culture. This study provides the first evidence that epinephrine, a hormone released from the host under stress and upon therapy, can affect B. pseudomallei virulence-associated properties.


Frontiers in Cellular and Infection Microbiology | 2017

Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

Veerachat Muangsombut; Patoo Withatanung; Varintip Srinon; Narisara Chantratita; Mark P. Stevens; Jenefer M. Blackwell; Sunee Korbsrisate

Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+) control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1), the Bsa Type III Secretion System (T3SS-3) and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence-associated genes by pathogenic B pseudomallei is enhanced in macrophages expressing wild-type compared to non-functional Nramp1. B. thailandensis has been proposed as surrogate for B. pseudomallei in the study of melioidosis however our study highlights important differences in the interaction of these bacteria with macrophages.

Collaboration


Dive into the Veerachat Muangsombut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paiboon Vattanaviboon

Chulabhorn Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge