Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Jun Jung is active.

Publication


Featured researches published by Sung Jun Jung.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress

Hyeon Son; Mounira Banasr; Miyeon Choi; Seung Yeon Chae; Pawel Licznerski; Boyoung Lee; Bhavya Voleti; Nanxin Li; Ashley E. Lepack; Neil M. Fournier; Ka Rim Lee; In Young Lee; Juhyun Kim; Joung-Hun Kim; Yong Ho Kim; Sung Jun Jung; Ronald S. Duman

Decreased neuronal dendrite branching and plasticity of the hippocampus, a limbic structure implicated in mood disorders, is thought to contribute to the symptoms of depression. However, the mechanisms underlying this effect, as well as the actions of antidepressant treatment, remain poorly characterized. Here, we show that hippocampal expression of neuritin, an activity-dependent gene that regulates neuronal plasticity, is decreased by chronic unpredictable stress (CUS) and that antidepressant treatment reverses this effect. We also show that viral-mediated expression of neuritin in the hippocampus produces antidepressant actions and prevents the atrophy of dendrites and spines, as well as depressive and anxiety behaviors caused by CUS. Conversely, neuritin knockdown produces depressive-like behaviors, similar to CUS exposure. The ability of neuritin to increase neuroplasticity is confirmed in models of learning and memory. Our results reveal a unique action of neuritin in models of stress and depression, and demonstrate a role for neuroplasticity in antidepressant treatment response and related behaviors.


Cell Reports | 2015

Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b

Kyung-Rok Yu; Ji-Hee Shin; Jae-Jun Kim; Myung Guen Koog; Jin Young Lee; Soon Won Choi; Hyung-Sik Kim; Yoojin Seo; Seunghee Lee; Tae-Hoon Shin; Min Ki Jee; Dong-Wook Kim; Sung Jun Jung; Sue Shin; Dong Wook Han; Kyung-Sun Kang

A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However, successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here, using microRNA (miRNA) expression profile analyses, we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2, a let-7-targeting gene, enables induction of hiNSCs that displayed morphological/molecular features and inxa0vitro/inxa0vivo differentiation potential similar to H9-derived NSCs. Interestingly, HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2, whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together, these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs inxa0minimal conditions and maintains hiNSC self-renewal, providing a strategy for the clinical treatment of neurological diseases.


PLOS ONE | 2012

Highly pure and expandable PSA-NCAM-positive neural precursors from human ESC and iPSC-derived neural rosettes.

Dae Sung Kim; Dongjin R. Lee; Han Soo Kim; Jeong Eun Yoo; Sung Jun Jung; Bo Young Lim; Jiho Jang; Hoon Chul Kang; Seungkwon You; Dong Youn Hwang; Joong Woo Leem; Taick Sang Nam; Sung-Rae Cho; Dong-Wook Kim

Homogeneous culture of neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) would provide a powerful tool for biomedical applications. However, previous efforts to expand mechanically dissected neural rosettes for cultivation of NPCs remain concerns regarding non-neural cell contamination. In addition, several attempts to purify NPCs using cell surface markers have not demonstrated the expansion capability of the sorted cells. In the present study, we show that polysialic acid-neural cell adhesion molecule (PSA-NCAM) is detected in neural rosette cells derived from hPSCs, and employ PSA-NCAM as a marker for purifying expandable primitive NPCs from the neural rosettes. PSA-NCAM-positive NPCs (termed hNPCPSA-NCAM+) were isolated from the heterogeneous cell population of mechanically harvested neural rosettes using magnetic-based cell sorting. The hNPCPSA-NCAM+ extensively expressed neural markers such as Sox1, Sox2, Nestin, and Musashi-1 (80∼98% of the total cells) and were propagated for multiple passages while retaining their primitive characteristics in our culture condition. Interestingly, PSA-NCAM-negative cells largely exhibited characteristics of neural crest cells. The hNPCPSA-NCAM+ showed multipotency and responsiveness to instructive cues towards region-specific neuronal subtypes in vitro. When transplanted into the rat striatum, hNPCPSA-NCAM+ differentiated into neurons, astrocytes, and oligodendrocytes without particular signs of tumorigenesis. Furthermore, Ki67-positive proliferating cells and non-neural lineage cells were rarely detected in the grafts of hNPCPSA-NCAM+ compared to those of neural rosette cells. Our results suggest that PSA-NCAM-mediated cell isolation provides a highly expandable population of pure primitive NPCs from hPSCs that will lend themselves as a promising strategy for drug screening and cell therapy for neurodegenerative disorders.


Human Gene Therapy | 2012

Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord.

Min Ki Jee; Jin Sun Jung; Young Bin Im; Sung Jun Jung; Soo Kyung Kang

MicroRNAs (miRNAs) compose a relatively new discipline in biomedical research, and many physiological processes in disease have been associated with changes in miRNA expression. Several studies report that miRNAs participate in biological processes such as the control of secondary injury in several disease models. Recently, we identified novel miRNAs that were abnormally up-regulated in a traumatic spinal cord injury (SCI). In the current study, we focused on miR20a, which causes continuing motor neuron degeneration when overexpressed in SCI lesions. Blocking miR20a in SCI animals led to neural cell survival and eventual neurogenesis with rescued expression of the key target gene, neurogenin 1 (Ngn1). Infusion of siNgn1 resulted in functional deficit in the hindlimbs caused by aggressive secondary injury and actively enhanced the inflammation involved in secondary injury progression. The events involving miR20a underlie motor neuron and myelin destruction and pathophysiology and ultimately block regeneration in injured spinal cords. Inhibition of miR20a expression effectively induced definitive motor neuron survival and neurogenesis, and SCI animals showed improved functional deficit. In this study, we showed that abnormal expression of miR20a induces secondary injury, which suggests that miR20a could be a potential target for therapeutic intervention following SCI.


Scientific Reports | 2015

Laser-induced thermoelastic effects can evoke tactile sensations

Jae-Hoon Jun; Jong-Rak Park; Sung-Phil Kim; Young Min Bae; Jang-Yeon Park; Hyung-Sik Kim; Seungmoon Choi; Sung Jun Jung; Seung Hwa Park; Dong-Il Yeom; Gu-In Jung; Ji-Sun Kim; Soon-Cheol Chung

Humans process a plethora of sensory information that is provided by various entities in the surrounding environment. Among the five major senses, technology for touch, haptics, is relatively young and has relatively limited applications largely due to its need for physical contact. In this article, we suggest a new way for non-contact haptic stimulation that uses laser, which has potential advantages such as mid-air stimulation, high spatial precision, and long working distance. We demonstrate such tactile stimulation can be enabled by laser-induced thermoelastic effects by means of physical and perceptual studies, as well as simulations. In the physical study, the mechanical effect of laser on a human skin sample is detected using low-power radiation in accordance with safety guidelines. Limited increases (< ~2.5u2009°C) in temperature at the surface of the skin, examined by both thermal camera and the Monte Carlo simulation, indicate that laser does not evoke heat-induced nociceptive sensation. In the human EEG study, brain responses to both mechanical and laser stimulation are consistent, along with subjective reports of the non-nociceptive sensation of laser stimuli.


PLOS ONE | 2010

DHP-derivative and low oxygen tension effectively induces human adipose stromal cell reprogramming.

Min Ki Jee; Ji Hoon Kim; Yong Man Han; Sung Jun Jung; Kyung Sun Kang; Dong-Wook Kim; Soo Kyung Kang

Background and Methods In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl)-derivative (DHP-d) to directly induce adipose tissue stromal cells (ATSC) to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1α and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC). Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions. Conclusions/Significance Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.


Journal of Biological Chemistry | 2015

Generation of Dopamine Neurons from Rodent Fibroblasts through the Expandable Neural Precursor Cell Stage

Mi-Sun Lim; Mi-Yoon Chang; Sang-Mi Kim; Sang-Hoon Yi; Haeyoung Suh-Kim; Sung Jun Jung; Min Jung Kim; Jin Hyuk Kim; Yong-Sung Lee; Soo-Young Lee; Dong-Wook Kim; Sang-Hun Lee; Chang-Hwan Park

Background: Fibroblasts can be converted into neurons by transduction with BAM. Results: Multiple lines of evidence were used to demonstrate that a significant percentage of BAM-transduced fibroblasts can be converted into iNPCs by co-expression of Bcl-xL. Conclusion: BAMX-derived iNPCs were expandable over multiple passages in vitro, and differentiation phenotypes of iNPCs were readily manipulated by specific developmental cues. Significance: Bcl-xL has a critical role in neural precursor cell conversion. Recent groundbreaking work has demonstrated that combined expression of the transcription factors Brn2, Ascl1, and Myt1L (BAM; also known as Wernig factors) convert mouse fibroblasts into postmitotic neuronal cells. However, questions remain regarding whether trans-conversion is achieved directly or involves an intermediary precursor stage. Trans-conversion toward expandable neural precursor cells (NPCs) is more useful than direct one-step neuron formation with respect to yielding a sufficient number of cells and the feasibility of manipulating NPC differentiation toward certain neuron subtypes. Here, we show that co-expression of Wernig factors and Bcl-xL induces fibroblast conversion into NPCs (induced NPCs (iNPCs)) that are highly expandable for >100 passages. Gene expression analyses showed that the iNPCs exhibited high expression of common NPC genes but not genes specific to defined embryonic brain regions. This finding indicated that a regional identity of iNPCs was not established. Upon induction, iNPCs predominantly differentiated into astrocytes. However, the differentiation potential was not fixed and could be efficiently manipulated into general or specific subtypes of neurons by expression of additional genes. Specifically, overexpression of Nurr1 and Foxa2, transcription factors specific for midbrain dopamine neuron development, drove iNPCs to yield mature midbrain dopamine neurons equipped with presynaptic DA neuronal functions. We further assessed the therapeutic potential of iNPCs in Parkinson disease model rats.


Development | 2012

In vitro generation of mature dopamine neurons by decreasing and delaying the expression of exogenous Nurr1

Chang-Hwan Park; Mi-Sun Lim; Yong-Hee Rhee; Sang-Hoon Yi; Boe-Kyoung Kim; Jaewon Shim; Yong Ho Kim; Sung Jun Jung; Sang-Hun Lee

Neural stem/progenitor cell (NSC/NPC) cultures can be a source of dopamine (DA) neurons for experimental and transplantation purposes. Nurr1, a steroid receptor transcription factor, can overcome the limitations associated with differentiation of cultured NPCs into DA neurons. However, forced Nurr1 expression in NPC cultures generates non-neuronal and/or immature DA cells. We show here that the Nurr1 level and period of expression crucially affect the differentiation and maturation of Nurr1-induced DA neurons. Mature DA neurons were generated by manipulating Nurr1 expression patterns to resemble those in the developing midbrain.


Stem Cells and Development | 2012

Argonaute2 Regulation for K+ Channel-Mediated Human Adipose Tissue-Derived Stromal Cells Self-Renewal and Survival in Nucleus

Bong Sun Kim; Young Bin Im; Sung Jun Jung; Chang Hwan Park; Soo Kyung Kang

Argonaute2 (Ago2) is a well-known factor that has intrinsic endonuclease activity and is a part of the fundamental gene regulatory machinery. Recently, we showed that nuclear Ago2 regulates voltage-gated potassium (Kv) channels and that Ago2/Kv1.3 has crucial functions in the self-renewal and cell de-aging processes in adipose tissue-derived stromal cells (ATSCs). In the nucleus, Ago2 bound to the promoter regions of calcium-activated potassium channel 3, potassium channel subfamily K member 1 (KCNK1), and voltage-gated potassium channel 2, and the expression of these genes was significantly upregulated at the level of transcription. We detected an active K+ channel that plays a critical role in Ago2-mediated ATSC self-renewal through the control of membrane potential during cell self-renewal and differentiation. Among the several regulatory subunits of voltage-dependent K+ (Kv) channels, Kv1.3 and Kv1.5 have been shown to impact tissue differentiation and cell growth in cultured ATSCs following their direct binding to the regulatory region of the Kv channel gene. In ATSCs, interference with Ago2 or K+ channel gene expression or treatment with tetraethylammonium significantly downregulated stemness gene expression, induced cell cycle arrest, and inhibited the ability of cells to transdifferentiate into neurons or β-cells via Oct4 knockdown. Blockage of the K+ channel significantly induced protein kinase C (PKC) α, β, and δ phosphorylation and negatively affected Ago2 and Oct4 expression. This K+ channel blockage also resulted in the upregulation of p53 and p21 expression and the inactivation of mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK 1/2), AKT, β-catenin, and STAT3. Our results suggest that the nuclear Ago2 regulation of the K+ channel or stemness-related gene expression plays a critical role in adult stem cell self-renewal and differentiation.


Cell Reports | 2017

TRPV1 Regulates Stress Responses through HDAC2

Sung Eun Wang; Seung Yeon Ko; Sungsin Jo; Miyeon Choi; Seung Hoon Lee; Hye-Ryeong Jo; Jee Young Seo; Sang Hoon Lee; Yong-Seok Kim; Sung Jun Jung; Hyeon Son

Stress causes changes in neurotransmission in the brain, thereby influencing stress-induced behaviors. However, it is unclear how neurotransmission systems orchestrate stress responses at the molecular and cellular levels. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel involved mainly in pain sensation, affects mood and neuroplasticity in the brain, where its role is poorly understood. Here, we show that Trpv1-deficient (Trpv1-/-) mice are more stress resilient than control mice after chronic unpredictable stress. We also found that glucocorticoid receptor (GR)-mediated histone deacetylase 2 (HDAC) 2 expression and activity are reduced in the Trpv1-/- mice and that HDAC2-regulated, cell-cycle- and neuroplasticity-related molecules are altered. Hippocampal knockdown of TRPV1 had similar effects, and its behavioral effects were blocked by HDAC2 overexpression. Collectively, our findings indicate that HDAC2 is a molecular link between TRPV1 activity and stress responses.

Collaboration


Dive into the Sung Jun Jung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Ki Jee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Soo Kyung Kang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyung-Sik Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge