Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suresh Solapure is active.

Publication


Featured researches published by Suresh Solapure.


Antimicrobial Agents and Chemotherapy | 2014

Bactericidal Activity and Mechanism of Action of AZD5847, a Novel Oxazolidinone for Treatment of Tuberculosis

V. Balasubramanian; Suresh Solapure; Harini Iyer; Anirban Ghosh; Sreevalli Sharma; Parvinder Kaur; R. Deepthi; Venkita Subbulakshmi; V. Ramya; Meenakshi Balganesh; L. Wright; David Melnick; S. L. Butler; Vasan K. Sambandamurthy

ABSTRACT Treatment of tuberculosis (TB) is impaired by the long duration and complexity of therapy and the rising incidence of drug resistance. There is an urgent need for new agents with improved efficacy, safety, and compatibility with combination chemotherapies. Oxazolidinones offer a potential new class of TB drugs, and linezolid—the only currently approved oxazolidinone—has proven highly effective against extensively drug-resistant (XDR) TB in experimental trials. However, widespread use of linezolid is prohibited by its significant toxicities. AZD5847, a novel oxazolidinone, demonstrates improved in vitro bactericidal activity against both extracellular and intracellular M. tuberculosis compared to that of linezolid. Killing kinetics in broth media and in macrophages indicate that the rate and extent of kill obtained with AZD5847 are superior to those obtained with linezolid. Moreover, the efficacy of AZD5847 was additive when tested along with a variety of conventional TB agents, indicating that AZD5847 may function well in combination therapies. AZD5847 appears to function similarly to linezolid through impairment of the mycobacterial 50S ribosomal subunit. Future studies should be undertaken to further characterize the pharmacodynamics and pharmacokinetics of AZD5847 in both in vitro and animal models as well is in human clinical trials.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro and In Vivo Efficacy of β-Lactams against Replicating and Slowly Growing/Nonreplicating Mycobacterium tuberculosis

Suresh Solapure; Neela Dinesh; Radha Shandil; Sreevalli Sharma; Deepa Bhattacharjee; Samit Ganguly; Jitendar Reddy; Vijaykamal Ahuja; Manish Parab; K. G. Vishwas; Naveen Kumar; Meenakshi Balganesh; V. Balasubramanian

ABSTRACT Beta-lactams, in combination with beta-lactamase inhibitors, are reported to have activity against Mycobacterium tuberculosis bacteria growing in broth, as well as inside the human macrophage. We tested representative beta-lactams belonging to 3 different classes for activity against replicating M. tuberculosis in broth and nonreplicating M. tuberculosis under hypoxia, as well as against streptomycin-starved M. tuberculosis strain 18b (ss18b) in the presence or absence of clavulanate. Most of the combinations showed bactericidal activity against replicating M. tuberculosis, with up to 200-fold improvement in potency in the presence of clavulanate. None of the combinations, including those containing meropenem, imipenem, and faropenem, killed M. tuberculosis under hypoxia. However, faropenem- and meropenem-containing combinations killed strain ss18b moderately. We tested the bactericidal activities of meropenem-clavulanate and amoxicillin-clavulanate combinations in the acute and chronic aerosol infection models of tuberculosis in BALB/c mice. Based on pharmacokinetic/pharmacodynamic indexes reported for beta-lactams against other bacterial pathogens, a cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (%TMIC) of 20 to 40% was achieved in mice using a suitable dosing regimen. Both combinations showed marginal reduction in lung CFU compared to the late controls in the acute model, whereas both were inactive in the chronic model.


Science Translational Medicine | 2017

Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase

Tanya Paquet; Claire Le Manach; Diego Gonzàlez Cabrera; Yassir Younis; Philipp P. Henrich; Tara S. Abraham; Marcus C. S. Lee; Rajshekhar Basak; Sonja Ghidelli-Disse; Maria Jose Lafuente-Monasterio; Marcus Bantscheff; Andrea Ruecker; Andrew M. Blagborough; Sara E. Zakutansky; Anne-Marie Zeeman; Karen L. White; David M. Shackleford; Janne Mannila; Julia Morizzi; Christian Scheurer; Iñigo Angulo-Barturen; María Santos Martínez; Santiago Ferrer; Laura Sanz; Francisco Javier Gamo; Janette Reader; Mariette Botha; Koen J. Dechering; Robert W. Sauerwein; Anchalee Tungtaeng

MMV390048, a member of a new class of inhibitors of the Plasmodium phosphatidylinositol 4-kinase, shows potential for both treatment and prophylaxis. A new antimalarial in the armamentarium Paquet et al. screened a small-molecule library against the human malaria parasite, Plasmodium falciparum, and identified the 2-aminopyridine chemical class with potent activity. The optimized compound from this class, MMV390048, was active against multiple parasite life cycle stages, in both the mammalian host and the mosquito vector, and also killed drug-resistant parasites. MMV390048 killed the malaria parasite by blocking the parasite’s phosphatidylinositol 4-kinase (PI4K) and was able to protect monkeys from malaria infection. MMV390048 has potential as a new antimalarial drug that may contribute to global malaria eradication efforts. As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Antimicrobial Agents and Chemotherapy | 2014

1,4-Azaindole, a Potential Drug Candidate for Treatment of Tuberculosis

Monalisa Chatterji; Radha Shandil; M. R. Manjunatha; Suresh Solapure; Naveen Kumar; Ramanatha Saralaya; Jitendar Reddy; K. R. Prabhakar; Sreevalli Sharma; Claire Sadler; Christopher B. Cooper; Khisi Mdluli; Pravin S. Iyer; Shridhar Narayanan; Pravin S. Shirude

ABSTRACT New therapeutic strategies against multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis are urgently required to combat the global tuberculosis (TB) threat. Toward this end, we previously reported the identification of 1,4-azaindoles, a promising class of compounds with potent antitubercular activity through noncovalent inhibition of decaprenylphosphoryl-β-d-ribose 2′-epimerase (DprE1). Further, this series was optimized to improve its physicochemical properties and pharmacokinetics in mice. Here, we describe the short-listing of a potential clinical candidate, compound 2, that has potent cellular activity, drug-like properties, efficacy in mouse and rat chronic TB infection models, and minimal in vitro safety risks. We also demonstrate that the compounds, including compound 2, have no antagonistic activity with other anti-TB drugs. Moreover, compound 2 shows synergy with PA824 and TMC207 in vitro, and the synergy effect is translated in vivo with TMC207. The series is predicted to have a low clearance in humans, and the predicted human dose for compound 2 is ≤1 g/day. Altogether, our data suggest that a 1,4-azaindole (compound 2) is a promising candidate for the development of a novel anti-TB drug.


Antimicrobial Agents and Chemotherapy | 2005

Scintillation Proximity Assay for Inhibitors of Escherichia coli MurG and, Optionally, MraY

Sudha Ravishankar; Vidya P. Kumar; B. Chandrakala; Ramesh K. Jha; Suresh Solapure; Sunita M. de Sousa

ABSTRACT MurG and MraY, essential enzymes involved in the synthesis of bacterial peptidoglycan, are difficult to assay because the substrates are lipidic and hard to prepare in large quantities. Based on the use of Escherichia coli membranes lacking PBP1b, we report a high-throughput method to measure the activity of MurG and, optionally, MraY as well. In these membranes, incubation with the two peptidoglycan sugar precursors results in accumulation of lipid II rather than the peptidoglycan produced by wild-type membranes. MurG was assayed by addition of UDP-[3H]N-acetylglucosamine to membranes in which lipid I was preformed by incubation with UDP-N-acetyl-muramylpentapeptide, and the product was captured by wheat germ agglutinin scintillation proximity assay beads. In a modification of the assay, the activity of MraY was coupled to that of MurG by addition of both sugar precursors together in a single step. This allows simultaneous detection of inhibitors of either enzyme. Both assays could be performed using wild-type membranes by addition of the transglycosylase inhibitor moenomycin. Nisin and vancomycin inhibited the MurG reaction; the MraY-MurG assay was inhibited by tunicamycin as well. Inhibitors of other enzymes of peptidoglycan synthesis—penicillin G, moenomycin, and bacitracin—had no effect. Surprisingly, however, the β-lactam cephalosporin C inhibited both the MurG and MraY-MurG assays, indicating a secondary mechanism by which this drug inhibits bacterial growth. In addition, it inhibited NADH dehydrogenase in membranes, a hitherto-unreported activity. These assays can be used to screen for novel antibacterial agents.


Journal of Medicinal Chemistry | 2014

Novel N-Linked Aminopiperidine-Based Gyrase Inhibitors with Improved hERG and in Vivo Efficacy against Mycobacterium tuberculosis

Shahul Hameed P; Vikas Patil; Suresh Solapure; Umender Sharma; Prashanti Madhavapeddi; Anandkumar Raichurkar; Murugan Chinnapattu; Praveena Manjrekar; Gajanan Shanbhag; Jayashree Puttur; Vikas Shinde; Sreenivasaiah Menasinakai; Suresh Rudrapatana; Vijayashree Achar; Disha Awasthy; Radha Nandishaiah; Vaishali Humnabadkar; Anirban Ghosh; Chandan Narayan; V. K. Ramya; Parvinder Kaur; Sreevalli Sharma; Jim Werngren; Sven Hoffner; C. N. Naveen Kumar; Jitendar Reddy; Mahesh Kumar Kn; Samit Ganguly; Ugarkar Bheemarao; Kakoli Mukherjee

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity. The mechanism of inhibition of DNA gyrase was distinct from the fluoroquinolones, as shown by their ability to inhibit the growth of fluoroquinolone-resistant Mtb. Biochemical studies demonstrated this class to exert its action via single-strand cleavage rather than double-strand cleavage, as seen with fluoroquinolones. The compounds are highly bactericidal against extracellular as well as intracellular Mtb. Lead optimization resulted in the identification of potent compounds with improved oral bioavailability and reduced cardiac ion channel liability. Compounds from this series are efficacious in various murine models of tuberculosis.


Antimicrobial Agents and Chemotherapy | 2012

Effect of Coadministration of Moxifloxacin and Rifampin on Mycobacterium tuberculosis in a Murine Aerosol Infection Model

V. Balasubramanian; Suresh Solapure; Sheshagiri Gaonkar; K.N. Mahesh Kumar; Radha Shandil; Abhijeet Deshpande; Naveen Kumar; K. G. Vishwas; Jitendar Reddy; Samit Ganguly; Arnold Louie; George L. Drusano

ABSTRACT Coadministration of moxifloxacin and rifampin was evaluated in a murine model of Mycobacterium tuberculosis pulmonary infection to determine whether the finding of antagonism documented in a hollow-fiber infection model could be recapitulated in vivo. Colony counts were followed in a no-treatment control group, groups administered moxifloxacin or rifampin monotherapy, and a group administered a combination of the two agents. Following 18 days of once-daily oral administration to mice infected with M. tuberculosis, there was a reduction in the plasma exposure to rifampin that decreased further when rifampin was coadministered with moxifloxacin. Pharmacodynamic analysis demonstrated a mild antagonistic interaction between moxifloxacin and rifampin with respect to cell kill in the mouse model for tuberculosis (TB). No emergence of resistance was noted over 28 days of therapy, even with monotherapy. This was true even though one of the agents in the combination (moxifloxacin) induces error-prone replication. The previously noted antagonism with respect to cell kill shown in the hollow-fiber infection model was recapitulated in the murine TB lung model, although to a lesser extent.


Nature Communications | 2015

Triaminopyrimidine is a fast-killing and long-acting antimalarial clinical candidate

Shahul Hameed P; Suresh Solapure; Vikas Patil; Philipp P. Henrich; Pamela Magistrado; Kannan Murugan; Pavithra Viswanath; Jayashree Puttur; Abhishek Srivastava; Eknath Bellale; Gajanan Shanbag; Disha Awasthy; Sudhir Landge; Sapna Morayya; Krishna Koushik; Ramanatha Saralaya; Anandkumar Raichurkar; Nikhil Rautela; Nilanjana Roy Choudhury; Anisha Ambady; Radha Nandishaiah; Jitendar Reddy; K. R. Prabhakar; Sreenivasaiah Menasinakai; Suresh Rudrapatna; Monalisa Chatterji; María Belén Jiménez-Díaz; María Santos Martínez; Laura Sanz; Olivia Coburn-Flynn

The widespread emergence of Plasmodium falciparum (Pf) strains resistant to frontline agents has fuelled the search for fast-acting agents with novel mechanism of action. Here, we report the discovery and optimization of novel antimalarial compounds, the triaminopyrimidines (TAPs), which emerged from a phenotypic screen against the blood stages of Pf. The clinical candidate (compound 12) is efficacious in a mouse model of Pf malaria with an ED99 <30 mg kg−1 and displays good in vivo safety margins in guinea pigs and rats. With a predicted half-life of 36 h in humans, a single dose of 260 mg might be sufficient to maintain therapeutic blood concentration for 4–5 days. Whole-genome sequencing of resistant mutants implicates the vacuolar ATP synthase as a genetic determinant of resistance to TAPs. Our studies highlight the potential of TAPs for single-dose treatment of Pf malaria in combination with other agents in clinical development.


Antimicrobial Agents and Chemotherapy | 2014

Optimization of Pyrrolamides as Mycobacterial GyrB ATPase Inhibitors: Structure-Activity Relationship and In Vivo Efficacy in a Mouse Model of Tuberculosis

Shahul Hameed P; Suresh Solapure; Kakoli Mukherjee; Vrinda Nandi; David Waterson; Radha Shandil; Meenakshi Balganesh; Vasan K. Sambandamurthy; Anand Kumar V. Raichurkar; Abhijeet Deshpande; Anirban Ghosh; Disha Awasthy; Gajanan Shanbhag; Gulebahar Sheikh; Helen McMiken; Jayashree Puttur; Jitendar Reddy; Jim Werngren; Jon Read; Mahesh Kumar; Manjunatha R; Murugan Chinnapattu; Prashanti Madhavapeddi; Praveena Manjrekar; Reetobrata Basu; Sheshagiri Gaonkar; Sreevalli Sharma; Sven Hoffner; Vaishali Humnabadkar; Venkita Subbulakshmi

ABSTRACT Moxifloxacin has shown excellent activity against drug-sensitive as well as drug-resistant tuberculosis (TB), thus confirming DNA gyrase as a clinically validated target for discovering novel anti-TB agents. We have identified novel inhibitors in the pyrrolamide class which kill Mycobacterium tuberculosis through inhibition of ATPase activity catalyzed by the GyrB domain of DNA gyrase. A homology model of the M. tuberculosis H37Rv GyrB domain was used for deciphering the structure-activity relationship and binding interactions of inhibitors with mycobacterial GyrB enzyme. Proposed binding interactions were later confirmed through cocrystal structure studies with the Mycobacterium smegmatis GyrB ATPase domain. The most potent compound in this series inhibited supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of <5 nM, an MIC of 0.03 μg/ml against M. tuberculosis H37Rv, and an MIC90 of <0.25 μg/ml against 99 drug-resistant clinical isolates of M. tuberculosis. The frequency of isolating spontaneous resistant mutants was ∼10−6 to 10−8, and the point mutation mapped to the M. tuberculosis GyrB domain (Ser208 Ala), thus confirming its mode of action. The best compound tested for in vivo efficacy in the mouse model showed a 1.1-log reduction in lung CFU in the acute model and a 0.7-log reduction in the chronic model. This class of GyrB inhibitors could be developed as novel anti-TB agents.


Antimicrobial Agents and Chemotherapy | 2006

Screen for Inhibitors of the Coupled Transglycosylase-Transpeptidase of Peptidoglycan Biosynthesis in Escherichia coli

B. Chandrakala; Vidya P. Kumar; Veeraraghavan Usha; Suresh Solapure; Sunita M. de Sousa

ABSTRACT Class A high-molecular-weight penicillin-binding protein 1a (PBP1a) and PBP1b of Escherichia coli have both transglycosylase (TG) and transpeptidase (TP) activity. These enzymes are difficult to assay, since their substrates are difficult to prepare. We show the activity of PBP1a or PBP1b can be measured in membranes by cloning the PBP into an E. coli ponB::Spcr strain. Using this assay, we show that PBP1a is ∼10-fold more sensitive to penicillin than PBP1b and that the 50% inhibitory concentration (IC50) of moenomycin, a TG inhibitor, is ∼10-fold higher in the PBP transformants than in wild-type membranes; this increase in IC50 in transformants can be used to test the specificity of test compounds for inhibition of the TG. Alternatively, the coupled TG-TP activity of PBP1b can be directly measured in a two-step microplate assay. In the first step, radiolabeled lipid II, the TG substrate, was made in membranes of the E. coli ponB::Spcr strain by incubation with the peptidoglycan sugar precursors. In the second step, the TG-TP activity was assayed by adding a source of PBP1b to the membranes. The coupled TG-TP activity converts lipid II to cross-linked peptidoglycan, which was specifically captured by wheat germ agglutinin-coated scintillation proximity beads in the presence of 0.2% Sarkosyl (B. Chandrakala et al., Antimicrob. Agents Chemother. 48:30-40, 2004). The TG-TP assay was inhibited by penicillin and moenomycin as expected. Surprisingly, tunicamycin and nisin also inhibited the assay, and paper chromatography analysis revealed that both inhibited the transglycosylase. The assay can be used to screen for novel antibacterial agents.

Collaboration


Dive into the Suresh Solapure's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge