Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susana Dipp is active.

Publication


Featured researches published by Susana Dipp.


Hypertension | 1994

Ontogeny of somatic angiotensin-converting enzyme.

Igor V. Yosipiv; Susana Dipp; Samir S. El-Dahr

Angiotensin-converting enzyme or kininase II (ACE-KII) plays a central role in the control of circulating and tissue levels of angiotensin II and kinins. Both peptides have been implicated in the regulation of renal function and growth during normal development. We tested the hypothesis that the developing rat kidney expresses ACE-KII mRNA transcripts and the active enzyme and evaluated whether the developmental expression of the ACE-KII gene is related to changes in circulating angiotensin II and tissue kallikrein. ACE-KII mRNA and enzymatic activity were low in the newborn kidney; peak expression occurred on days 15 and 20 of postnatal life (16-fold versus day 1). In extrarenal tissues, ACE-KII activity and mRNA levels were also low during the newborn period in the following order of abundance: lung > kidney > aorta > heart. The lung showed a higher age-related increase in active ACE-KII and mRNA abundance (15-fold) than heart and aorta (activity, 3- to 4-fold; mRNA, 6- to 10-fold). The developmental profile of ACE-KII correlated temporally with changes in circulating angiotensin II and tissue kallikrein. Plasma angiotensin II levels were 2.5-fold higher in newborn than adult rats, whereas renal and extrarenal kallikrein-like activity increased twofold to fivefold from birth to adulthood. These results demonstrate that the ACE-KII gene is developmentally regulated in a tissue-specific manner. Tissue kinin generation and degradation, reflected by kallikrein and ACE-KII activities, are coordinately regulated during development, whereas circulating angiotensin II and tissue ACE-KII change in a reciprocal manner.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension | 1999

Early Onset Salt-Sensitive Hypertension in Bradykinin B2 Receptor Null Mice

Ludek Cervenka; Lisa M. Harrison-Bernard; Susana Dipp; Ginny Primrose; John D. Imig; Samir S. El-Dahr

Kinins have been implicated in the hemodynamic adaptation to postnatal life. The present study examined the impact of bradykinin B(2) receptor (B(2)R) gene disruption on the postnatal changes in blood pressure (BP) and the susceptibility to early onset salt-sensitive hypertension in mice. B(2)R null (-/-) and wild-type (+/+) mice were fed normal (NS, 1% NaCl) or high (HS, 5% NaCl) salt diets during pregnancy. After birth, the pups remained with their mothers until they were weaned and were subsequently continued on the respective maternal salt intake until 4 months of age. The age-related changes at 3 and 4 months in tail-cuff BP and anesthetized mean arterial pressure at 4 months were not different in NS/B(2)R(-/-) and NS/B(2)R(+/+) mice. However, there was a mild increase in BP in NS/B(2)R(-/-) at 2 months versus NS/B(2)R(+/+). In contrast, HS/B(2)R(-/-) mice manifested early onset and persistent elevations of tail-cuff BP (P<0.05) at 2, 3, and 4 months versus other groups. MAP was also higher in HS/B(2)R(-/-) than HS/B(2)R(+/+), NS/B(2)R(-/-), and NS/B(2)R(+/+) (91+/-3 versus 75+/-5, 74+/-2, and 70+/-2 mm Hg, respectively; P<0.05). Kidney renin and angiotensin type 1 receptor mRNA levels were not different. Additional studies showed that a delay in the initiation of HS until after birth was accompanied by later development of hypertension, although postnatal discontinuation of HS resulted in a gradual return of BP to normal values by 4 months of age. The results demonstrate that (1) kinins protect the developing animal from salt-sensitive hypertension, (2) lack of B(2)R from early development does not alter the maturation of BP under conditions of normal sodium intake, and (3) exposure to a HS diet during fetal life is not sufficient in itself to induce long-term hypertension in either wild-type or B(2)R null mice.


American Journal of Physiology-renal Physiology | 1998

Bradykinin stimulates the ERK→Elk-1→Fos/AP-1 pathway in mesangial cells

Samir S. El-Dahr; Susana Dipp; William H. Baricos

Among its diverse biological actions, the vasoactive peptide bradykinin (BK) induces the transcription factor AP-1 and proliferation of mesangial cells (S. S. El-Dahr, S. Dipp, I. V. Yosipiv, and W. H. Baricos. Kidney Int. 50: 1850-1855, 1996). In the present study, we examined the role of protein tyrosine phosphorylation and the mitogen-activated protein kinases, ERK1/2,in mediating BK-induced AP-1 and DNA replication in cultured rat mesangial cells. BK (10(-9) to 10(-7) M) stimulated a rapid increase in tyrosine phosphorylation of multiple proteins with an estimated molecular mass of 120-130, 90-95, and 44-42 kDa. Immunoblots using antibodies specific for ERK or tyrosine-phosphorylated ERK revealed a shifting of p42 ERK2 to a higher molecular weight that correlated temporally with an increase in tyrosine-phosphorylated ERK2. Genistein, a specific tyrosine kinase inhibitor, prevented the phosphorylation of ERK2 by BK. In-gel kinase assays indicated that BK-induced tyrosine phosphorylation of ERK2 is accompanied by fourfold activation of its phosphotransferase activity toward the substrate PHAS-I (P < 0.05). Furthermore, BK stimulated a 2.5-fold increase (P < 0.05) in phosphorylation of Elk-1, a transcription factor required for growth factor-induced c-fos transcription. In accord with the stimulation of Elk-1 phosphorylation, BK induced c-fos gene expression and the production of Fos/AP-1 complexes. In addition, thymidine incorporation into DNA increased twofold (P < 0. 05) following BK stimulation. Each of these effects was blocked by tyrosine kinase inhibition with genistein or herbimycin A. Similarly, antisense oligodeoxynucleotide targeting of ERK1/2 mRNA inhibited BK-stimulated DNA synthesis. In contrast, protein kinase C inhibition or depletion had no effect on BK-induced c-fos mRNA, AP-1-DNA binding activity, or DNA synthesis. Collectively, these data demonstrate that BK activates the ERK-->Elk-1-->AP-1 pathway and that BK mitogenic signaling is critically dependent on protein tyrosine phosphorylation.Among its diverse biological actions, the vasoactive peptide bradykinin (BK) induces the transcription factor AP-1 and proliferation of mesangial cells (S. S. El-Dahr, S. Dipp, I. V. Yosipiv, and W. H. Baricos. Kidney Int. 50: 1850-1855, 1996). In the present study, we examined the role of protein tyrosine phosphorylation and the mitogen-activated protein kinases, ERK1/2,in mediating BK-induced AP-1 and DNA replication in cultured rat mesangial cells. BK (10-9 to 10-7 M) stimulated a rapid increase in tyrosine phosphorylation of multiple proteins with an estimated molecular mass of 120-130, 90-95, and 44-42 kDa. Immunoblots using antibodies specific for ERK or tyrosine-phosphorylated ERK revealed a shifting of p42 ERK2 to a higher molecular weight that correlated temporally with an increase in tyrosine-phosphorylated ERK2. Genistein, a specific tyrosine kinase inhibitor, prevented the phosphorylation of ERK2 by BK. In-gel kinase assays indicated that BK-induced tyrosine phosphorylation of ERK2 is accompanied by fourfold activation of its phosphotransferase activity toward the substrate PHAS-I ( P < 0.05). Furthermore, BK stimulated a 2.5-fold increase ( P < 0.05) in phosphorylation of Elk-1, a transcription factor required for growth factor-induced c-fos transcription. In accord with the stimulation of Elk-1 phosphorylation, BK induced c-fos gene expression and the production of Fos/AP-1 complexes. In addition, thymidine incorporation into DNA increased twofold ( P < 0.05) following BK stimulation. Each of these effects was blocked by tyrosine kinase inhibition with genistein or herbimycin A. Similarly, antisense oligodeoxynucleotide targeting of ERK1/2 mRNA inhibited BK-stimulated DNA synthesis. In contrast, protein kinase C inhibition or depletion had no effect on BK-induced c-fos mRNA, AP-1-DNA binding activity, or DNA synthesis. Collectively, these data demonstrate that BK activates the ERK→Elk-1→AP-1 pathway and that BK mitogenic signaling is critically dependent on protein tyrosine phosphorylation.


Journal of Biological Chemistry | 2011

Histone Deacetylase (HDAC) Activity Is Critical for Embryonic Kidney Gene Expression, Growth, and Differentiation

Shaowei Chen; Christine Bellew; Xiao Yao; Jana Stefkova; Susana Dipp; Zubaida Saifudeen; Dimcho Bachvarov; Samir S. El-Dahr

Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1–3 and class II HDAC4, -7, and -9 genes are developmentally regulated. Moreover, HDAC1–3 are highly expressed in nephron precursors. Short term treatment of cultured mouse embryonic kidneys with HDAC inhibitors (HDACi) induced global histone H3 and H4 hyperacetylation and H3K4 hypermethylation. However, genome-wide profiling revealed that the HDAC-regulated transcriptome is restricted and encompasses regulators of the cell cycle, Wnt/β-catenin, TGF-β/Smad, and PI3K-AKT pathways. Further analysis demonstrated that base-line expression of key developmental renal regulators, including Osr1, Eya1, Pax2/8, WT1, Gdnf, Wnt9b, Sfrp1/2, and Emx2, is dependent on intact HDAC activity. Treatment of cultured embryonic kidney cells with HDACi recapitulated these gene expression changes, and chromatin immunoprecipitation assays revealed that HDACi is associated with histone hyperacetylation of Pax2/Pax8, Gdnf, Sfrp1, and p21. Gene knockdown studies demonstrated that HDAC1 and HDAC2 play a redundant role in regulation of Pax2/8 and Sfrp1 but not Gdnf. Long term treatment of embryonic kidneys with HDACi impairs the ureteric bud branching morphogenesis program and provokes growth arrest and apoptosis. We conclude that HDAC activity is critical for normal embryonic kidney homeostasis, and we implicate class I HDACs in the regulation of early nephron gene expression, differentiation, and survival.


Journal of Clinical Investigation | 2002

A role for p53 in terminal epithelial cell differentiation

Zubaida Saifudeen; Susana Dipp; Samir S. El-Dahr

Terminal epithelial cell differentiation is a crucial step in development. In the kidney, failure of terminal differentiation causes dysplasia, cystogenesis, and cancer. The present study provides multiple lines of evidence implicating the tumor suppressor protein p53 in terminal differentiation of the renal epithelium. In the developing kidney, p53 is highly enriched in epithelial cells expressing renal function genes (RFGs), such as receptors for vasoactive hormones, the sodium pump, and epithelial sodium and water channels. In comparison, proliferating renal progenitors express little if any p53 or RFGs. p53 binds to and transactivates the promoters of RFGs. In contrast, expression of a dominant negative mutant form of p53 inhibits endogenous RFG expression. Moreover, binding of endogenous p53 to the promoters of RFGs coincides with the differentiation process and is attenuated once renal epithelial cells are fully differentiated. Finally, p53-null pups exhibit a previously unrecognized aberrant renal phenotype and spatial disorganization of RFGs. Interestingly, the p53-related protein p73 is unable to functionally compensate for the loss of p53 and fails to efficiently activate RFG transcription. We conclude that p53 promotes the biochemical and morphological differentiation of the renal epithelium. Aberrations in p53-mediated terminal differentiation may therefore play a role in the pathogenesis of nephron dysgenesis and dysfunction.


Journal of Biological Chemistry | 2006

The Polycystic Kidney Disease-1 Gene Is a Target for p53-mediated Transcriptional Repression

Diederik Van Bodegom; Zubaida Saifudeen; Susana Dipp; Sanjeev Puri; Brenda S. Magenheimer; James P. Calvet; Samir S. El-Dahr

This study provides evidence that the tumor suppressor protein, p53, is a transcriptional repressor of PKD1. Kidneys of p53-null mice expressed higher Pkd1 mRNA levels than wild-type littermates; γ-irradiation suppressed PKD1 gene expression in p53+/+ but not p53–/– cells; and chromatin immunoprecipitation assays demonstrated the binding of p53 to the PKD1 promoter in vivo. In transient transfection assays, p53 repressed PKD1 promoter activity independently of endogenous p21. Deletion analysis mapped p53-mediated repression to the proximal promoter region of PKD1. Mutations of the DNA binding or C-terminal minimal repression domains of p53 abolished its ability to repress PKD1. Moreover, trichostatin A, an inhibitor of histone deacetylase activity, attenuated p53-induced repression of the PKD1 promoter. These findings, together with previous reports showing that dedifferentiated Pkd1-deficient cells express lower p53 and p21 levels, suggest a model whereby PKD1 signaling activates the p53-p21 differentiation pathway. In turn, p53 cooperates with histone deacetylases to repress PKD1 gene transcription. Loss of a p53-mediated negative feedback loop in PKD1 mutant cells may therefore contribute to deregulated PKD1 expression and cystogenesis.


PLOS ONE | 2012

A p53-Pax2 Pathway in Kidney Development: Implications for Nephrogenesis

Zubaida Saifudeen; Jiao Liu; Susana Dipp; Xiao Yao; Yuwen Li; Nathaniel McLaughlin; Karam Aboudehen; Samir S. El-Dahr

Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53−/−) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CMp53−/−). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53−/− and CMp53−/−embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2 +/− mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.


Journal of Biological Chemistry | 2005

Spatiotemporal Switch from ΔNp73 to TAp73 Isoforms during Nephrogenesis IMPACT ON DIFFERENTIATION GENE EXPRESSION

Zubaida Saifudeen; Virginia Diavolitsis; Jana Stefkova; Susana Dipp; Hao Fan; Samir S. El-Dahr

p73 is a member of the p53 gene family, which also includes p53 and p63. These proteins share sequence similarity and target genes but also have divergent roles in cancer and development. Unlike p53, transcription of the p73 gene yields multiple full-length (transactivation (TA) domain) and amino terminus-truncated (ΔN) isoforms. ΔNp73 acts in a dominant negative fashion to inhibit the actions of TAp73 and p53 on their target genes, promoting cell survival and proliferation and suppressing apoptosis. The balance between TAp73 and its negative regulator, ΔNp73, may therefore represent an important determinant of developmental cell fate. There is little if anything known regarding the developmental regulation of the p73 gene. In this study, we showed that TAp73 and ΔNp73 exhibit reciprocal spatiotemporal expression and functions during nephrogenesis. TAp73 was predominantly expressed in the differentiation domain of the renal cortex in an overlapping manner with the vasopressin-sensitive water channel aquaporin-2 (AQP-2). Chromatin immunoprecipitation assays demonstrated that the endogenous AQP-2 promoter was occupied by TAp73 in a developmentally regulated manner. Furthermore TAp73 stimulated AQP-2 promoter-driven reporter expression. TAp73 also activated the bradykinin B2 receptor (B2R) promoter, a developmentally regulated gene involved in regulation of sodium excretion. The transcriptional effects of TAp73 on AQP-2 and B2R were independent of p53. In marked contrast to TAp73, ΔNp73 isoforms were induced early in development and were preferentially expressed in proliferating nephron precursors. Moreover ΔNp73 was a potent repressor of B2R gene transcription. We conclude that the p73 gene is developmentally regulated during kidney organogenesis. The spatiotemporal switch from ΔNp73 to TAp73 may play an important role in the terminal differentiation program of the developing nephron.


Pediatric Nephrology | 2000

Fetal ontogeny and role of metanephric bradykinin B2 receptors.

Samir S. El-Dahr; Susana Dipp; Suzanne Meleg-Smith; Paolo Pinna-Parpaglia; Paolo Madeddu

Abstract Previous studies in rats have shown that blockade of bradykinin B2 receptors (B2R) in combination with a high-salt intake during gestation result in poor postnatal survival and long-term hypertension in the offspring. In this study, we examined the fetal ontogeny of B2R and determined the consequences of gestational B2R blockade and high salt on kidney development. B2R gene expression is induced on embryonic day (E16) of fetal metanephrogenesis and remains sustained until term. The earliest expression of the B2R protein is observed on apical membranes of ureteric bud branches and in capillary loop stage glomeruli. By the end of gestation, B2R becomes restricted to more-differentiated tubules in the deep cortex and medulla. Pairs of rats on normal (0.12 mmol/g) or high (0.84 mmol/g) salt diets were mated at 14 weeks of age. The B2R antagonist, Icatibant (previously known as Hoe-140) (300 nmol/kg per day) or saline (vehicle) was infused intraperitoneally during gestation via osmotic minipumps. Fetuses were examined on E20 (n=27–36 per group). No significant differences in litter size or body weight were observed among the groups. Combined high-salt and Icatibant treatment caused aberrant fetal renal development characterized by tubular dysgenesis, widened stromal mesenchyme, and glomerular cysts. The dysgenetic tubules stained positively for the distal nephron lectin, Dolichos biflorus, and exhibited enhanced Bax expression and apoptosis. Renal microvascular development, the number of mature glomeruli, and percentage of proliferating glomerular cells were not affected. Gestational Icatibant or high salt alone had no deleterious effects on fetal nephrogenesis. We conclude that gestational blockade of the kallikrein-kinin system impairs fetal nephrogenesis if combined with an intrauterine stressor such as high-salt intake. B2R may play a protective role during segmental nephron differentiation.


Peptides | 2003

The Bradykinin B2 receptor is required for full expression of renal COX-2 and renin

John D. Imig; Xueying Zhao; Sheyla R. Orengo; Susana Dipp; Samir S. El-Dahr

Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2 and renin gene expression. Kidney COX-2 mRNA and protein levels were significantly lower in B2R-/- mice by 40-50%. On the other hand, renal COX-1 levels were similar in B2R-/- and +/+ mice. Renal renin protein was 61% lower in B2R-/- compared to B2R+/+ mice. This was accompanied by a significant reduction in renin mRNA levels in B2R-/- mice. Likewise, intrarenal angiotensin I levels were significantly lower in B2R-/- mice compared to B2R+/+ mice. In contrast, kidney angiotensin II levels were not different and averaged 261+/-16 and 266+/-15fmol/g in B2R+/+ and B2R-/- mice, respectively. Kidney angiotensinogen, AT1 receptor and ACE activity were not different between B2R+/+ and B2R-/- mice. The results of these studies demonstrate suppression of renal renin synthesis in mice lacking the bradykinin B2R and support the notion that B2R regulation of COX-2 participates in the steady-state control of renin gene expression.

Collaboration


Dive into the Susana Dipp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Imig

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge