Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samir S. El-Dahr is active.

Publication


Featured researches published by Samir S. El-Dahr.


Hypertension | 1999

Regulation of Angiotensin II Type 1 Receptor mRNA and Protein in Angiotensin II–Induced Hypertension

Lisa M. Harrison-Bernard; Samir S. El-Dahr; Denise F. O’Leary; L. Gabriel Navar

Chronic elevations of circulating angiotensin II (Ang II) cause sustained hypertension and enhanced accumulation of intrarenal Ang II by an AT1 receptor-dependent process. The present study tested the hypothesis that chronic elevations in circulating Ang II regulate AT1 mRNA and protein expression in a tissue-specific manner. Sprague-Dawley rats were infused with Ang II (80 ng/min) or vehicle subcutaneously for 13 days via osmotic minipump. On day 12, systolic blood pressure averaged 186+/-12 mm Hg in Ang II-infused rats compared with rats given vehicle (121+/-2 mm Hg). Plasma renin activity was markedly suppressed in the Ang II-infused rats compared with vehicle-infused rats (0.1+/-0.01 versus 4.9+/-0.9 ng of Ang I. mL-1. h-1; P<0.05). Semiquantitative reverse transcription polymerase chain reaction using rat AT1A- and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH)-specific primers was followed by Southern blot hybridization using specific radiolabeled cDNA or oligonucleotide probes. The results showed that the ratios of AT1A/GAPDH mRNA in the kidney (0.19+/-0.05 versus 0. 26+/-0.03) and liver (2.8+/-0.9 versus 3.0+/-0.5) were comparable in Ang II- and vehicle-infused rats. In contrast, AT1A/GAPDH mRNA levels were increased in the adrenal glands of Ang II-infused rats (0.49+/-0.04 versus 0.36+/-0.02; P<0.05). Western blot analysis showed that AT1 protein levels in the kidney and liver were also similar in the two groups. Therefore, these results indicate that renal and liver AT1 receptor gene expression is maintained in Ang II-induced hypertension. The failure to downregulate AT1 receptor mRNA and protein levels thus allows the sustained effects of chronic elevations in Ang II to elicit progressive increases in arterial pressure.


Nature Reviews Nephrology | 2007

Mechanisms of Disease: The tissue kallikrein-kinin system in hypertension and vascular remodeling

Paolo Madeddu; Costanza Emanueli; Samir S. El-Dahr

The pathogenesis of arterial hypertension often involves a rise in systemic vascular resistance (vasoconstriction and vascular remodeling) and impairment of salt excretion in the kidney (inappropriate salt retention despite elevated blood pressure). Experimental and clinical evidence implicate an imbalance between endogenous vasoconstrictor and vasodilator systems in the development and maintenance of hypertension. Kinins (bradykinin and lys-bradykinin) are endogenous vasodilators and natriuretic peptides known best for their ability to antagonize angiotensin-induced vasoconstriction and sodium retention. In humans, angiotensin-converting enzyme inhibitors, a potent class of antihypertensive agents, lower blood pressure at least partially by favoring enhanced kinin accumulation in plasma and target tissues. The beneficial actions of kinins in renal and cardiovascular disease are largely mediated by nitric oxide and prostaglandins, and extend beyond their recognized role in lowering blood pressure to include cardioprotection and nephroprotection. This article is a review of exciting, recently generated genetic, biochemical and clinical data from studies that have examined the importance of the tissue kallikrein–kinin system in protection from hypertension, vascular remodeling and renal fibrosis. Development of novel therapeutic approaches to bolster kinin activity in the vascular wall and in specific compartments in the kidney might be a highly effective strategy for the treatment of hypertension and its complications, including cardiac hypertrophy and renal failure.


Hypertension | 1994

Ontogeny of somatic angiotensin-converting enzyme.

Igor V. Yosipiv; Susana Dipp; Samir S. El-Dahr

Angiotensin-converting enzyme or kininase II (ACE-KII) plays a central role in the control of circulating and tissue levels of angiotensin II and kinins. Both peptides have been implicated in the regulation of renal function and growth during normal development. We tested the hypothesis that the developing rat kidney expresses ACE-KII mRNA transcripts and the active enzyme and evaluated whether the developmental expression of the ACE-KII gene is related to changes in circulating angiotensin II and tissue kallikrein. ACE-KII mRNA and enzymatic activity were low in the newborn kidney; peak expression occurred on days 15 and 20 of postnatal life (16-fold versus day 1). In extrarenal tissues, ACE-KII activity and mRNA levels were also low during the newborn period in the following order of abundance: lung > kidney > aorta > heart. The lung showed a higher age-related increase in active ACE-KII and mRNA abundance (15-fold) than heart and aorta (activity, 3- to 4-fold; mRNA, 6- to 10-fold). The developmental profile of ACE-KII correlated temporally with changes in circulating angiotensin II and tissue kallikrein. Plasma angiotensin II levels were 2.5-fold higher in newborn than adult rats, whereas renal and extrarenal kallikrein-like activity increased twofold to fivefold from birth to adulthood. These results demonstrate that the ACE-KII gene is developmentally regulated in a tissue-specific manner. Tissue kinin generation and degradation, reflected by kallikrein and ACE-KII activities, are coordinately regulated during development, whereas circulating angiotensin II and tissue ACE-KII change in a reciprocal manner.(ABSTRACT TRUNCATED AT 250 WORDS)


Hypertension | 2001

Angiotensin II–Induced Hypertension in Bradykinin B2 Receptor Knockout Mice

Ludĕk C̆ervenka; Jan Malý; Ludmila Karasová; Marcela Šímová; Stefan Vitko; Son̆a Hellerová; Jir̆í Heller; Samir S. El-Dahr

The present study was performed to examine the role of endogenous bradykinin (BK) in the development of angiotensin II (Ang II)–induced hypertension in mice. BK B2 receptor knockout (B2R−/−) and wild-type (B2R+/+) mice (22 to 26 g) were infused with either saline (SAL) or Ang II (40 ng/min) via an osmotic minipump implanted intraperitoneally. On day 12 after implantation, there was no difference in systolic blood pressure (SBP, tail-cuff plethysmography) between SAL/B2R+/+ and SAL/B2R−/− mice (128±5 versus 133±6 mm Hg, n=24/group). In contrast, SBP was higher on day 12 of infusion in Ang II/B2R−/− than in Ang II/B2R+/+ mice (173±6 versus 156±5 mm Hg;P <0.05, n=27 and 28). Mean arterial pressure (MAP) was also higher in anesthetized Ang II/B2R−/− mice than in Ang II/B2R+/+ mice (139±3 versus 124±3 mm Hg;P <0.05, n=16 and 14). Unlike Ang II, long-term norepinephrine (NE) infusion via an osmotic minipump (45 ng/min) caused equivalent increases in SBP in B2R+/+ and B2R−/− mice measured on day 12 after implantation (151±4 versus 149±5 mm Hg, n=9 and 8). MAP also did not differ on day 13 after implantation between NE/B2R+/+ and NE/B2R−/− mice (120±6 versus 122±4 mm Hg, n=9 and 8). There were no differences in glomerular filtration rate and urinary sodium excretion among the groups. However, renal plasma flow (RPF) was lower in Ang II/B2R−/− mice than in Ang II/B2R+/+ mice (2.34±0.06 versus 4.33±0.19 mL · min−1 · g−1;P <0.05). Acute inhibition of NO synthase (NOS) with nitro-l-arginine-methyl ester (0.5 &mgr;g · g−1 · min−1) in SAL/B2+/+ and SAL/B2−/− mice caused equal increases in MAP (142±1 versus 145±1 mm Hg) and decreases in RPF (2.06±0.06 versus 2.12±0.15 mL · min−1 · g−1). However, short-term NOS inhibition caused a greater increase in MAP of Ang II/B2R+/+ mice than of Ang II/B2R−/− mice, such that MAP after NOS inhibition in Ang II/B2R+/+ approached that of Ang II/B2R−/− mice (156±2 versus 159±2 mm Hg). These changes were associated with a decrease in RPF in Ang II/B2R+/+ mice to values similar to those of Ang II/B2R−/− mice before NOS inhibition (2.12±0.09 versus 2.34±0.06 mL · min−1 · g−1). These results demonstrate that the kallikrein-kinin system selectively buffers the vasoconstrictor activity of Ang II. Furthermore, the enhanced susceptibility of B2R−/− mice to Ang II–induced hypertension and renal vasoconstriction is likely due to an impaired ability to release NO by endogenous kinins.


Hypertension | 1999

Early Onset Salt-Sensitive Hypertension in Bradykinin B2 Receptor Null Mice

Ludek Cervenka; Lisa M. Harrison-Bernard; Susana Dipp; Ginny Primrose; John D. Imig; Samir S. El-Dahr

Kinins have been implicated in the hemodynamic adaptation to postnatal life. The present study examined the impact of bradykinin B(2) receptor (B(2)R) gene disruption on the postnatal changes in blood pressure (BP) and the susceptibility to early onset salt-sensitive hypertension in mice. B(2)R null (-/-) and wild-type (+/+) mice were fed normal (NS, 1% NaCl) or high (HS, 5% NaCl) salt diets during pregnancy. After birth, the pups remained with their mothers until they were weaned and were subsequently continued on the respective maternal salt intake until 4 months of age. The age-related changes at 3 and 4 months in tail-cuff BP and anesthetized mean arterial pressure at 4 months were not different in NS/B(2)R(-/-) and NS/B(2)R(+/+) mice. However, there was a mild increase in BP in NS/B(2)R(-/-) at 2 months versus NS/B(2)R(+/+). In contrast, HS/B(2)R(-/-) mice manifested early onset and persistent elevations of tail-cuff BP (P<0.05) at 2, 3, and 4 months versus other groups. MAP was also higher in HS/B(2)R(-/-) than HS/B(2)R(+/+), NS/B(2)R(-/-), and NS/B(2)R(+/+) (91+/-3 versus 75+/-5, 74+/-2, and 70+/-2 mm Hg, respectively; P<0.05). Kidney renin and angiotensin type 1 receptor mRNA levels were not different. Additional studies showed that a delay in the initiation of HS until after birth was accompanied by later development of hypertension, although postnatal discontinuation of HS resulted in a gradual return of BP to normal values by 4 months of age. The results demonstrate that (1) kinins protect the developing animal from salt-sensitive hypertension, (2) lack of B(2)R from early development does not alter the maturation of BP under conditions of normal sodium intake, and (3) exposure to a HS diet during fetal life is not sufficient in itself to induce long-term hypertension in either wild-type or B(2)R null mice.


American Journal of Physiology-renal Physiology | 1998

Bradykinin stimulates the ERK→Elk-1→Fos/AP-1 pathway in mesangial cells

Samir S. El-Dahr; Susana Dipp; William H. Baricos

Among its diverse biological actions, the vasoactive peptide bradykinin (BK) induces the transcription factor AP-1 and proliferation of mesangial cells (S. S. El-Dahr, S. Dipp, I. V. Yosipiv, and W. H. Baricos. Kidney Int. 50: 1850-1855, 1996). In the present study, we examined the role of protein tyrosine phosphorylation and the mitogen-activated protein kinases, ERK1/2,in mediating BK-induced AP-1 and DNA replication in cultured rat mesangial cells. BK (10(-9) to 10(-7) M) stimulated a rapid increase in tyrosine phosphorylation of multiple proteins with an estimated molecular mass of 120-130, 90-95, and 44-42 kDa. Immunoblots using antibodies specific for ERK or tyrosine-phosphorylated ERK revealed a shifting of p42 ERK2 to a higher molecular weight that correlated temporally with an increase in tyrosine-phosphorylated ERK2. Genistein, a specific tyrosine kinase inhibitor, prevented the phosphorylation of ERK2 by BK. In-gel kinase assays indicated that BK-induced tyrosine phosphorylation of ERK2 is accompanied by fourfold activation of its phosphotransferase activity toward the substrate PHAS-I (P < 0.05). Furthermore, BK stimulated a 2.5-fold increase (P < 0.05) in phosphorylation of Elk-1, a transcription factor required for growth factor-induced c-fos transcription. In accord with the stimulation of Elk-1 phosphorylation, BK induced c-fos gene expression and the production of Fos/AP-1 complexes. In addition, thymidine incorporation into DNA increased twofold (P < 0. 05) following BK stimulation. Each of these effects was blocked by tyrosine kinase inhibition with genistein or herbimycin A. Similarly, antisense oligodeoxynucleotide targeting of ERK1/2 mRNA inhibited BK-stimulated DNA synthesis. In contrast, protein kinase C inhibition or depletion had no effect on BK-induced c-fos mRNA, AP-1-DNA binding activity, or DNA synthesis. Collectively, these data demonstrate that BK activates the ERK-->Elk-1-->AP-1 pathway and that BK mitogenic signaling is critically dependent on protein tyrosine phosphorylation.Among its diverse biological actions, the vasoactive peptide bradykinin (BK) induces the transcription factor AP-1 and proliferation of mesangial cells (S. S. El-Dahr, S. Dipp, I. V. Yosipiv, and W. H. Baricos. Kidney Int. 50: 1850-1855, 1996). In the present study, we examined the role of protein tyrosine phosphorylation and the mitogen-activated protein kinases, ERK1/2,in mediating BK-induced AP-1 and DNA replication in cultured rat mesangial cells. BK (10-9 to 10-7 M) stimulated a rapid increase in tyrosine phosphorylation of multiple proteins with an estimated molecular mass of 120-130, 90-95, and 44-42 kDa. Immunoblots using antibodies specific for ERK or tyrosine-phosphorylated ERK revealed a shifting of p42 ERK2 to a higher molecular weight that correlated temporally with an increase in tyrosine-phosphorylated ERK2. Genistein, a specific tyrosine kinase inhibitor, prevented the phosphorylation of ERK2 by BK. In-gel kinase assays indicated that BK-induced tyrosine phosphorylation of ERK2 is accompanied by fourfold activation of its phosphotransferase activity toward the substrate PHAS-I ( P < 0.05). Furthermore, BK stimulated a 2.5-fold increase ( P < 0.05) in phosphorylation of Elk-1, a transcription factor required for growth factor-induced c-fos transcription. In accord with the stimulation of Elk-1 phosphorylation, BK induced c-fos gene expression and the production of Fos/AP-1 complexes. In addition, thymidine incorporation into DNA increased twofold ( P < 0.05) following BK stimulation. Each of these effects was blocked by tyrosine kinase inhibition with genistein or herbimycin A. Similarly, antisense oligodeoxynucleotide targeting of ERK1/2 mRNA inhibited BK-stimulated DNA synthesis. In contrast, protein kinase C inhibition or depletion had no effect on BK-induced c-fos mRNA, AP-1-DNA binding activity, or DNA synthesis. Collectively, these data demonstrate that BK activates the ERK→Elk-1→AP-1 pathway and that BK mitogenic signaling is critically dependent on protein tyrosine phosphorylation.


Hypertension | 1996

Activation of Angiotensin-Generating Systems in the Developing Rat Kidney

Igor V. Yosipiv; Samir S. El-Dahr

The present study was designed to determine the developmental changes in intrarenal angiotensin (Ang) peptides in the rat. Kidney Ang I and II levels were threefold and sixfold higher in newborn than adult kidneys, respectively (Ang I, 678 +/- 180 versus 243 +/- 38 fmol/g, P < .01; Ang II, 667 +/- 75 versus 103 +/- 6 fmol/g, P < .001). Intrarenal Ang II levels correlated positively with the temporal changes in renin gene expression (r = .93, P < .001). However, no correlation was found between renal Ang II content and angiotensin-converting enzyme (ACE) expression during development, which prompted us to evaluate whether renal enzymes, other than renin and ACE, contribute to Ang II formation in the developing kidney. Angiotensin peptide levels were measured in newborn and adult kidney homogenates incubated with human angiotensinogen (a poor rat renin substrate) for 30 minutes at 37 degrees C. Inhibitors of aspartyl proteases and metalloproteases were ineffective in preventing the formation of Ang II in either newborn or adult kidneys. However, addition of the serine protease inhibitors soybean trypsin inhibitor and phenylmethylsulfonyl fluoride inhibited Ang II generation in the newborn kidneys only. In contrast, Ang I generation was not affected by inhibition of serine proteases in either newborn or adult kidneys. We conclude that Ang I and II synthesis is activated in the developing rat kidney. In addition to renin and ACE, the newborn rat kidney expresses serine protease activity that is capable of generating Ang II directly from angiotensinogen. This putative enzyme is induced in the newborn kidney and may cooperate with renin in the activation of Ang II synthesis during early development.


Journal of Biological Chemistry | 2011

Histone Deacetylase (HDAC) Activity Is Critical for Embryonic Kidney Gene Expression, Growth, and Differentiation

Shaowei Chen; Christine Bellew; Xiao Yao; Jana Stefkova; Susana Dipp; Zubaida Saifudeen; Dimcho Bachvarov; Samir S. El-Dahr

Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1–3 and class II HDAC4, -7, and -9 genes are developmentally regulated. Moreover, HDAC1–3 are highly expressed in nephron precursors. Short term treatment of cultured mouse embryonic kidneys with HDAC inhibitors (HDACi) induced global histone H3 and H4 hyperacetylation and H3K4 hypermethylation. However, genome-wide profiling revealed that the HDAC-regulated transcriptome is restricted and encompasses regulators of the cell cycle, Wnt/β-catenin, TGF-β/Smad, and PI3K-AKT pathways. Further analysis demonstrated that base-line expression of key developmental renal regulators, including Osr1, Eya1, Pax2/8, WT1, Gdnf, Wnt9b, Sfrp1/2, and Emx2, is dependent on intact HDAC activity. Treatment of cultured embryonic kidney cells with HDACi recapitulated these gene expression changes, and chromatin immunoprecipitation assays revealed that HDACi is associated with histone hyperacetylation of Pax2/Pax8, Gdnf, Sfrp1, and p21. Gene knockdown studies demonstrated that HDAC1 and HDAC2 play a redundant role in regulation of Pax2/8 and Sfrp1 but not Gdnf. Long term treatment of embryonic kidneys with HDACi impairs the ureteric bud branching morphogenesis program and provokes growth arrest and apoptosis. We conclude that HDAC activity is critical for normal embryonic kidney homeostasis, and we implicate class I HDACs in the regulation of early nephron gene expression, differentiation, and survival.


Journal of The American Society of Nephrology | 2006

Angiotensin II Type 1 Receptor–EGF Receptor Cross-Talk Regulates Ureteric Bud Branching Morphogenesis

Ihor V. Yosypiv; Mercedes Schroeder; Samir S. El-Dahr

Angiotensinogen-, angiotensin-converting enzyme-, and angiotensin II (Ang II) type 1 receptor (AT(1)R)-deficient mice exhibit a dilated renal pelvis (hydronephrosis) and a small papilla. These abnormalities have been attributed to impaired development of the ureteral and pelvic smooth muscle. Defects in the growth and branching of the ureteric bud (UB), which gives rise to the collecting system, have not been examined carefully. This study tested the hypothesis that Ang II stimulates UB growth and branching in the intact metanephros. Immunohistochemistry demonstrated that embryonic mouse kidneys express AT(1)R in the UB and its branches. Embryonic day 11.5 metanephroi were microdissected from Hoxb7-green fluorescence protein mice and grown for 48 h in serum-free medium in the presence or absence of Ang II. The number of green fluorescence protein-positive UB branch points (BP) and tips was monitored in each explant at 24 and 48 h. Ang II increased the number of UB tips and BP at 24 h (tips: 24.3 +/- 1.1 versus 18.3 +/- 0.7, P < 0.01; BP: 14.4 +/- 0.6 versus 11.7 +/- 0.6, P < 0.01) and 48 h (tips: 30.2 +/- 1.3 versus 22.9 +/- 0.8, P < 0.01; BP: 21.3 +/- 0.9 versus 15.7 +/- 0.6, P < 0.01) compared with control. In contrast, treatment of metanephroi with the AT(1)R antagonist candesartan inhibited UB branching, decreasing the number of UB tips and BP. Similarly, inhibition of EGF receptor (EGFR) tyrosine kinase activity abrogated Ang II-stimulated UB branching. A cross-talk between the renin-angiotensin system and EGFR signaling was elicited at the cellular level by the ability of Ang II to induce tyrosine phosphorylation of EGFR in UB cells and through abrogation of Ang II-induced UB cell branching using an EGFR tyrosine kinase inhibitor. These data demonstrate that Ang II, acting via the AT(1)R, stimulates UB branching morphogenesis. This process depends on tyrosine phosphorylation of the EGFR. Cooperation of AT(1)R and EGFR signaling therefore is important in the development of the renal collecting system.


Journal of Clinical Investigation | 2002

A role for p53 in terminal epithelial cell differentiation

Zubaida Saifudeen; Susana Dipp; Samir S. El-Dahr

Terminal epithelial cell differentiation is a crucial step in development. In the kidney, failure of terminal differentiation causes dysplasia, cystogenesis, and cancer. The present study provides multiple lines of evidence implicating the tumor suppressor protein p53 in terminal differentiation of the renal epithelium. In the developing kidney, p53 is highly enriched in epithelial cells expressing renal function genes (RFGs), such as receptors for vasoactive hormones, the sodium pump, and epithelial sodium and water channels. In comparison, proliferating renal progenitors express little if any p53 or RFGs. p53 binds to and transactivates the promoters of RFGs. In contrast, expression of a dominant negative mutant form of p53 inhibits endogenous RFG expression. Moreover, binding of endogenous p53 to the promoters of RFGs coincides with the differentiation process and is attenuated once renal epithelial cells are fully differentiated. Finally, p53-null pups exhibit a previously unrecognized aberrant renal phenotype and spatial disorganization of RFGs. Interestingly, the p53-related protein p73 is unable to functionally compensate for the loss of p53 and fails to efficiently activate RFG transcription. We conclude that p53 promotes the biochemical and morphological differentiation of the renal epithelium. Aberrations in p53-mediated terminal differentiation may therefore play a role in the pathogenesis of nephron dysgenesis and dysfunction.

Collaboration


Dive into the Samir S. El-Dahr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karam Aboudehen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge