Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zubaida Saifudeen is active.

Publication


Featured researches published by Zubaida Saifudeen.


Journal of Biological Chemistry | 2011

Histone Deacetylase (HDAC) Activity Is Critical for Embryonic Kidney Gene Expression, Growth, and Differentiation

Shaowei Chen; Christine Bellew; Xiao Yao; Jana Stefkova; Susana Dipp; Zubaida Saifudeen; Dimcho Bachvarov; Samir S. El-Dahr

Histone deacetylases (HDACs) regulate fundamental biological processes such as cellular proliferation, differentiation, and survival via genomic and nongenomic effects. This study examined the importance of HDAC activity in the regulation of gene expression and differentiation of the developing mouse kidney. Class I HDAC1–3 and class II HDAC4, -7, and -9 genes are developmentally regulated. Moreover, HDAC1–3 are highly expressed in nephron precursors. Short term treatment of cultured mouse embryonic kidneys with HDAC inhibitors (HDACi) induced global histone H3 and H4 hyperacetylation and H3K4 hypermethylation. However, genome-wide profiling revealed that the HDAC-regulated transcriptome is restricted and encompasses regulators of the cell cycle, Wnt/β-catenin, TGF-β/Smad, and PI3K-AKT pathways. Further analysis demonstrated that base-line expression of key developmental renal regulators, including Osr1, Eya1, Pax2/8, WT1, Gdnf, Wnt9b, Sfrp1/2, and Emx2, is dependent on intact HDAC activity. Treatment of cultured embryonic kidney cells with HDACi recapitulated these gene expression changes, and chromatin immunoprecipitation assays revealed that HDACi is associated with histone hyperacetylation of Pax2/Pax8, Gdnf, Sfrp1, and p21. Gene knockdown studies demonstrated that HDAC1 and HDAC2 play a redundant role in regulation of Pax2/8 and Sfrp1 but not Gdnf. Long term treatment of embryonic kidneys with HDACi impairs the ureteric bud branching morphogenesis program and provokes growth arrest and apoptosis. We conclude that HDAC activity is critical for normal embryonic kidney homeostasis, and we implicate class I HDACs in the regulation of early nephron gene expression, differentiation, and survival.


Journal of Clinical Investigation | 2002

A role for p53 in terminal epithelial cell differentiation

Zubaida Saifudeen; Susana Dipp; Samir S. El-Dahr

Terminal epithelial cell differentiation is a crucial step in development. In the kidney, failure of terminal differentiation causes dysplasia, cystogenesis, and cancer. The present study provides multiple lines of evidence implicating the tumor suppressor protein p53 in terminal differentiation of the renal epithelium. In the developing kidney, p53 is highly enriched in epithelial cells expressing renal function genes (RFGs), such as receptors for vasoactive hormones, the sodium pump, and epithelial sodium and water channels. In comparison, proliferating renal progenitors express little if any p53 or RFGs. p53 binds to and transactivates the promoters of RFGs. In contrast, expression of a dominant negative mutant form of p53 inhibits endogenous RFG expression. Moreover, binding of endogenous p53 to the promoters of RFGs coincides with the differentiation process and is attenuated once renal epithelial cells are fully differentiated. Finally, p53-null pups exhibit a previously unrecognized aberrant renal phenotype and spatial disorganization of RFGs. Interestingly, the p53-related protein p73 is unable to functionally compensate for the loss of p53 and fails to efficiently activate RFG transcription. We conclude that p53 promotes the biochemical and morphological differentiation of the renal epithelium. Aberrations in p53-mediated terminal differentiation may therefore play a role in the pathogenesis of nephron dysgenesis and dysfunction.


Journal of The American Society of Nephrology | 2007

The Bradykinin B2 Receptor Gene Is a Target of Angiotensin II Type 1 Receptor Signaling

Bing Shen; Lisa M. Harrison-Bernard; Andrew J. Fuller; Vanessa Vanderpool; Zubaida Saifudeen; Samir S. El-Dahr

Cross-talk between G protein-coupled receptors (GPCR) is known to occur at multiple levels, including receptor heterodimerization and intracellular signaling. This study tested the hypothesis that GPCR cross-talk occurs at the transcriptional level. It was demonstrated that the bradykinin B2 receptor gene (BdkrB2) is a direct transcriptional target of the angiotensin II (AngII) type 1 receptor (AT(1)R) in collecting duct cells. AngII induced BdkrB2 mRNA expression in mouse inner medullary collecting duct cells, and this effect was abrogated by AT(1)R blockade; in contrast, AT(2)R blockade was ineffective. Actinomycin D, an inhibitor of gene transcription, abrogated AngII-stimulated BdkrB2 expression. In addition, AngII produced dosage- and time-dependent increases in B2 receptor protein levels (2.9 +/- 0.4 fold; P < 0.05). AngII stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133 and assembly of p-CREB on the BdkrB2 promoter in vivo. Moreover, AngII induced hyperacetylation of BdkrB2 promoter-associated H4 histones, a chromatin modification that is associated with gene activation. Mutations of the CRE abrogated AngII-induced activation of the BdkrB2 promoter. AngII-treated inner medullary collecting duct cells exhibited augmented intracellular calcium signaling in response to bradykinin, confirming the functional relevance of AT(1)-B2 receptor signaling. Finally, studies that were conducted in angiotensin type 1 receptor (Agtr1)-null mice revealed that BdkrB2 mRNA levels were significantly lower in the renal medulla of Agtr1(A)(-/-) and Agtr1(A/B)(-/-) than in Agtr1(+/+) and Agtr1(B)(-/-) mice. It is concluded that BdkrB2 is a downstream target of the AT(1)R-CREB signaling pathway. Transcriptional regulation represents a novel form of cross-talk between GPCR that link the renin-angiotensin and kallikrein-kinin systems.


Journal of Biological Chemistry | 2006

The Polycystic Kidney Disease-1 Gene Is a Target for p53-mediated Transcriptional Repression

Diederik Van Bodegom; Zubaida Saifudeen; Susana Dipp; Sanjeev Puri; Brenda S. Magenheimer; James P. Calvet; Samir S. El-Dahr

This study provides evidence that the tumor suppressor protein, p53, is a transcriptional repressor of PKD1. Kidneys of p53-null mice expressed higher Pkd1 mRNA levels than wild-type littermates; γ-irradiation suppressed PKD1 gene expression in p53+/+ but not p53–/– cells; and chromatin immunoprecipitation assays demonstrated the binding of p53 to the PKD1 promoter in vivo. In transient transfection assays, p53 repressed PKD1 promoter activity independently of endogenous p21. Deletion analysis mapped p53-mediated repression to the proximal promoter region of PKD1. Mutations of the DNA binding or C-terminal minimal repression domains of p53 abolished its ability to repress PKD1. Moreover, trichostatin A, an inhibitor of histone deacetylase activity, attenuated p53-induced repression of the PKD1 promoter. These findings, together with previous reports showing that dedifferentiated Pkd1-deficient cells express lower p53 and p21 levels, suggest a model whereby PKD1 signaling activates the p53-p21 differentiation pathway. In turn, p53 cooperates with histone deacetylases to repress PKD1 gene transcription. Loss of a p53-mediated negative feedback loop in PKD1 mutant cells may therefore contribute to deregulated PKD1 expression and cystogenesis.


PLOS ONE | 2012

A p53-Pax2 Pathway in Kidney Development: Implications for Nephrogenesis

Zubaida Saifudeen; Jiao Liu; Susana Dipp; Xiao Yao; Yuwen Li; Nathaniel McLaughlin; Karam Aboudehen; Samir S. El-Dahr

Congenital reduction in nephron number (renal hypoplasia) is a predisposing factor for chronic kidney disease and hypertension. Despite identification of specific genes and pathways in nephrogenesis, determinants of final nephron endowment are poorly understood. Here, we report that mice with germ-line p53 deletion (p53−/−) manifest renal hypoplasia; the phenotype can be recapitulated by conditional deletion of p53 from renal progenitors in the cap mesenchyme (CMp53−/−). Mice or humans with germ-line heterozygous mutations in Pax2 exhibit renal hypoplasia. Since both transcription factors are developmentally expressed in the metanephros, we tested the hypothesis that p53 and Pax2 cooperate in nephrogenesis. In this study, we provide evidence for the presence of genetic epistasis between p53 and Pax2: a) p53−/− and CMp53−/−embryos express lower Pax2 mRNA and protein in nephron progenitors than their wild-type littermates; b) ChIP-Seq identified peaks of p53 occupancy in chromatin regions of the Pax2 promoter and gene in embryonic kidneys; c) p53 binding to Pax2 gene is significantly more enriched in Pax2 -expressing than non-expressing metanephric mesenchyme cells; d) in transient transfection assays, Pax2 promoter activity is stimulated by wild-type p53 and inhibited by a dominant negative mutant p53; e) p53 knockdown in cultured metanephric mesenchyme cells down-regulates endogenous Pax2 expression; f) reduction of p53 gene dosage worsens the renal hypoplasia in Pax2 +/− mice. Bioinformatics identified a set of developmental renal genes likely to be co-regulated by p53 and Pax2. We propose that the cross-talk between p53 and Pax2 provides a transcriptional platform that promotes nephrogenesis, thus contributing to nephron endowment.


Journal of Biological Chemistry | 2005

Spatiotemporal Switch from ΔNp73 to TAp73 Isoforms during Nephrogenesis IMPACT ON DIFFERENTIATION GENE EXPRESSION

Zubaida Saifudeen; Virginia Diavolitsis; Jana Stefkova; Susana Dipp; Hao Fan; Samir S. El-Dahr

p73 is a member of the p53 gene family, which also includes p53 and p63. These proteins share sequence similarity and target genes but also have divergent roles in cancer and development. Unlike p53, transcription of the p73 gene yields multiple full-length (transactivation (TA) domain) and amino terminus-truncated (ΔN) isoforms. ΔNp73 acts in a dominant negative fashion to inhibit the actions of TAp73 and p53 on their target genes, promoting cell survival and proliferation and suppressing apoptosis. The balance between TAp73 and its negative regulator, ΔNp73, may therefore represent an important determinant of developmental cell fate. There is little if anything known regarding the developmental regulation of the p73 gene. In this study, we showed that TAp73 and ΔNp73 exhibit reciprocal spatiotemporal expression and functions during nephrogenesis. TAp73 was predominantly expressed in the differentiation domain of the renal cortex in an overlapping manner with the vasopressin-sensitive water channel aquaporin-2 (AQP-2). Chromatin immunoprecipitation assays demonstrated that the endogenous AQP-2 promoter was occupied by TAp73 in a developmentally regulated manner. Furthermore TAp73 stimulated AQP-2 promoter-driven reporter expression. TAp73 also activated the bradykinin B2 receptor (B2R) promoter, a developmentally regulated gene involved in regulation of sodium excretion. The transcriptional effects of TAp73 on AQP-2 and B2R were independent of p53. In marked contrast to TAp73, ΔNp73 isoforms were induced early in development and were preferentially expressed in proliferating nephron precursors. Moreover ΔNp73 was a potent repressor of B2R gene transcription. We conclude that the p73 gene is developmentally regulated during kidney organogenesis. The spatiotemporal switch from ΔNp73 to TAp73 may play an important role in the terminal differentiation program of the developing nephron.


American Journal of Physiology-renal Physiology | 2008

Transcriptional control of terminal nephron differentiation

Samir S. El-Dahr; Karam Aboudehen; Zubaida Saifudeen

Terminal differentiation of epithelial cells into more specialized cell types is a critical step in organogenesis. Throughout the process of terminal differentiation, epithelial progenitors acquire or upregulate expression of renal function genes and cease to proliferate, while expression of embryonic genes is repressed. This exquisite coordination of gene expression is accomplished by signaling networks and transcription factors which couple the external environment with the new functional demands of the cell. While there has been much progress in understanding the early steps involved in renal epithelial cell differentiation, a major gap remains in our knowledge of the factors that control the steps of terminal differentiation. A number of signaling molecules and transcription factors have been recently implicated in determining segmental nephron identity and functional differentiation. While some of these factors (the p53 gene family, hepatocyte nuclear factor-1beta) promote the terminal epithelial differentiation fate, others (Notch, Brn-1, IRX, KLF4, and Foxi1) tend to regulate differentiation of specific nephron segments and individual cell types. This review summarizes current knowledge related to these transcription factors and discusses how diverse cellular signals are integrated to generate a transcriptional output during the process of terminal differentiation. Since these transcriptional processes are accompanied by profound changes in nuclear chromatin structure involving the genes responsible for creating and maintaining the differentiated cell phenotype, future studies should focus on identifying the nature of these epigenetic events and factors, how they are regulated temporally and spatially, and the chromatin environment they eventually reside in.


Development | 2015

Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium.

Shaowei Chen; Xiao Yao; Yuwen Li; Zubaida Saifudeen; Dimcho Bachvarov; Samir S. El-Dahr

Histone deacetylases (HDACs) regulate a broad range of biological processes through removal of acetyl groups from histones as well as non-histone proteins. Our previous studies showed that Hdac1 and Hdac2 are bound to promoters of key renal developmental regulators and that HDAC activity is required for embryonic kidney gene expression. However, the existence of many HDAC isoforms in embryonic kidneys raises questions concerning the possible specificity or redundancy of their functions. We report here that targeted deletion of both the Hdac1 and Hdac2 genes from the ureteric bud (UB) cell lineage of mice causes bilateral renal hypodysplasia. One copy of either Hdac1 or Hdac2 is sufficient to sustain normal renal development. In addition to defective cell proliferation and survival, genome-wide transcriptional profiling revealed that the canonical Wnt signaling pathway is specifically impaired in UBHdac1,2−/− kidneys. Our results also demonstrate that loss of Hdac1 and Hdac2 in the UB epithelium leads to marked hyperacetylation of the tumor suppressor protein p53 on lysine 370, 379 and 383; these post-translational modifications are known to boost p53 stability and transcriptional activity. Genetic deletion of p53 partially rescues the development of UBHdac1,2−/− kidneys. Together, these data indicate that Hdac1 and Hdac2 are crucial for kidney development. They perform redundant, yet essential, cell lineage-autonomous functions via p53-dependent and -independent pathways. Summary: HDAC1 and 2 perform redundant yet essential functions during ureteric bud branching, controlling cell proliferation and survival, and regulating Wnt signalling and p53 acetylation.


Epigenetics | 2013

Histone signature of metanephric mesenchyme cell lines

Nathan McLaughlin; Xiao Yao; Yuwen Li; Zubaida Saifudeen; Samir S. El-Dahr

The metanephric mesenchyme (MM) gives rise to nephrons, the filtering units of the mature kidney. The MM is composed of uninduced (Six2high/Lhx1low) and induced (Wnt-stimulated, Six2low/Lhx1high) cells. The global epigenetic state of MM cells is unknown, partly due to technical difficulty in isolating sufficient numbers of homogenous cell populations. We therefore took advantage of two mouse clonal cell lines representing the uninduced (mK3) and induced (mK4) metanephric mesenchyme (based on gene expression profiles and ability to induce branching of ureteric bud). ChIP-Seq revealed that whereas H3K4me3 active region “peaks” are enriched in metabolic genes, H3K27me3 peaks decorate mesenchyme and epithelial cell fate commitment genes. In uninduced mK3 cells, promoters of “stemness” genes (e.g., Six2, Osr1) are enriched with H3K4me3 peaks; these are lost in induced mK4 cells. ChIP-qPCR confirmed this finding and further demonstrated that G9a/H3K9me2 occupy the promoter region of Six2 in induced cells, consistent with the inactive state of transcription. Conversely, genes that mark the induced epithelialized state (e.g., Lhx1, Pax8), transition from a non-permissive to an active chromatin signature in mK3 vs. mK4 cells, respectively. Importantly, stimulation of Wnt signaling in uninduced mK3 cells provokes an active chromatin state (high H3K4me3, low H3K27me3), recruitment of β-catenin, and loss of pre-bound histone methyltransferase Ezh2 in silent induced genes followed by activation of transcription. We conclude that the chromatin signature of uninduced and induced cells correlates strongly with their gene expression states, suggesting a role of chromatin-based mechanisms in MM cell fate.


Epigenetics | 2014

In situ histone landscape of nephrogenesis

Nathan McLaughlin; Fenglin Wang; Zubaida Saifudeen; Samir S. El-Dahr

In the developing kidney, self-renewing progenitors respond to inductive signaling from the adjacent branching ureteric bud by undergoing mesenchyme-to-epithelium transition. Nascent nephrons subsequently undergo elongation, segmentation, and differentiation into a mature renal epithelium with diverse functions. Epigenetic mechanisms have been implicated in impacting cell fate decisions during nephrogenesis; however, the chromatin landscape of nephron progenitors and daughter differentiating cells are largely unknown. Here, we examined the spatiotemporal expression patterns of histone H3 methylation and histone methyltransferases in E15.5 mouse kidneys. Kidney sections were probed with antibodies against histone modifications, enzymes, and markers of progenitors and differentiation. The results revealed that: (1) nephron progenitor cells exhibit a broad histone methylation signature that comprises both “active” and “repressive” marks (H3K4me3/K9me3/K27me3/R2me2/R17me2); (2) nascent nephrons retain high H3K4me3 but show downregulation of H3K9/K27me3 and; (3) maturing epithelial tubules acquire high levels of H3K79me2/3. Consistent with respective histone marks, the H3K4 methyltransferase, Ash2l, is expressed in progenitors and nascent nephrons, whereas the H3K9/K27 methyltransferases, G9a/Ezh2, are more enriched in progenitors than nascent nephrons. We conclude that combinatorial histone signatures correlate with cell fate decisions during nephrogenesis.

Collaboration


Dive into the Zubaida Saifudeen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karam Aboudehen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge