Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Susanna Cogoi is active.

Publication


Featured researches published by Susanna Cogoi.


Nucleic Acids Research | 2006

G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription

Susanna Cogoi; Luigi E. Xodo

In human and mouse, the promoter of the KRAS gene contains a nuclease hypersensitive polypurine–polypyrimidine element (NHPPE) that is essential for transcription. An interesting feature of the polypurine G-rich strand of NHPPE is its ability to assume an unusual DNA structure that, according to circular dichroism (CD) and DMS footprinting experiments, is attributed to an intramolecular parallel G-quadruplex, consisting of three G-tetrads and three loops. The human and mouse KRAS NHPPE G-rich strands display melting temperature of 64 and 73°C, respectively, as well as a K+-dependent capacity to arrest DNA polymerase. Photocleavage and CD experiments showed that the cationic porphyrin TMPyP4 stacks to the external G-tetrads of the KRAS quadruplexes, increasing the Tm by ∼20°C. These findings raise the intriguing question that the G-quadruplex formed within the NHPPE of KRAS may be involved in the regulation of transcription. Indeed, transfection experiments showed that the activity of the mouse KRAS promoter is reduced to 20% of control, in the presence of the quadruplex-stabilizing TMPyP4. In addition, we found that G-rich oligonucleotides mimicking the KRAS quadruplex, but not the corresponding 4-base mutant sequences or oligonucleotides forming quadruplexes with different structures, competed with the NHPPE duplex for binding to nuclear proteins. When vector pKRS-413, containing CAT driven by the mouse KRAS promoter, and KRAS quadruplex oligonucleotides were co-transfected in 293 cells, the expression of CAT was found to be downregulated to 40% of the control. On the basis of these data, we propose that the NHPPE of KRAS exists in equilibrium between a double-stranded form favouring transcription and a folded quadruplex form, which instead inhibits transcription. Such a mechanism, which is probably adopted by other growth-related genes, provides useful hints for the rational design of anticancer drugs against the KRAS oncogene.


Nucleic Acids Research | 2009

Protein hnRNP A1 and its derivative Up1 unfold quadruplex DNA in the human KRAS promoter: implications for transcription

Manikandan Paramasivam; Alexandro Membrino; Susanna Cogoi; Hirokazu Fukuda; Hitoshi Nakagama; Luigi E. Xodo

The promoter of the human KRAS proto-oncogene contains a structurally polymorphic nuclease hypersensitive element (NHE) whose purine strand forms a parallel G-quadruplex structure (called 32R). In a previous work we reported that quadruplex 32R is recognized by three nuclear proteins: PARP-1, Ku70 and hnRNP A1. In this study we describe the interaction of recombinant hnRNP A1 (A1) and its derivative Up1 with the KRAS G-quadruplex. Mobility-shift experiments show that A1/Up1 binds specifically, and also with a high affinity, to quadruplex 32R, while CD demonstrates that the proteins strongly reduce the intensity of the 260 nm-ellipticity—the hallmark for parallel G4-DNA—and unfold the G-quadruplex. Fluorescence resonance energy transfer melting experiments reveal that A1/Up1 completely abrogates the cooperative quadruplex-to-ssDNA transition that characterizes the KRAS quadruplex and facilitates the association between quadruplex 32R and its complementary polypyrimidine strand. When quadruplex 32R is stabilized by TMPyP4, A1/Up1 brings about only a partial destabilization of the G4-DNA structure. The possible role played by hnRNP A1 in the mechanism of KRAS transcription is discussed.


Journal of Biological Chemistry | 2010

The KRAS promoter responds to MYC-associated zinc finger and poly[ADP-ribose]polymerase 1 proteins which recognize a critical quadruplex-forming GA-element

Susanna Cogoi; Manikandan Paramasivam; Alexandro Membrino; Kazunari K. Yokoyama; Luigi E. Xodo

The murine KRAS promoter contains a G-rich nuclease hypersensitive element (GA-element) upstream of the transcription start site that is essential for transcription. Pulldown and chromatin immunoprecipitation assays demonstrate that this GA-element is bound by the Myc-associated zinc finger (MAZ) and poly(ADP-ribose) polymerase 1 (PARP-1) proteins. These proteins are crucial for transcription, because when they are knocked down by short hairpin RNA, transcription is down-regulated. This is also the case when the poly(ADP-ribosyl)ation activity of PARP-1 is inhibited by 3,4-dihydro-5-[4-(1-piperidinyl) butoxyl]-1(2H) isoquinolinone. We found that MAZ specifically binds to the duplex and quadruplex conformations of the GA-element, whereas PARP-1 shows specificity only for the G-quadruplex. On the basis of fluorescence resonance energy transfer melting and polymerase stop assays we saw that MAZ stabilizes the KRAS quadruplex. When the capacity of folding in the GA-element is abrogated by specific G → T or G → A point mutations, KRAS transcription is down-regulated. Conversely, guanidine-modified phthalocyanines, which specifically interact with and stabilize the KRAS G-quadruplex, push the promoter activity up to more than double. Collectively, our data support a transcription mechanism for murine KRAS that involves MAZ, PARP-1 and duplex-quadruplex conformational changes in the promoter GA-element.


Journal of Medicinal Chemistry | 2009

Identification of a New G-Quadruplex Motif in the KRAS Promoter and Design of Pyrene-Modified G4-Decoys with Antiproliferative Activity in Pancreatic Cancer Cells

Susanna Cogoi; Manikandan Paramasivam; Vyacheslav V. Filichev; Imrich Géci; Erik B. Pedersen; Luigi E. Xodo

A new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells. When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the T(m) (deltaT(m) from 22 to 32 degrees C) and a strong antiproliferative effects in Panc-1 cells.


PLOS ONE | 2011

G4-DNA Formation in the HRAS Promoter and Rational Design of Decoy Oligonucleotides for Cancer Therapy

Alexandro Membrino; Susanna Cogoi; Erik B. Pedersen; Luigi E. Xodo

HRAS is a proto-oncogene involved in the tumorigenesis of urinary bladder cancer. In the HRAS promoter we identified two G-rich elements, hras-1 and hras-2, that fold, respectively, into an antiparallel and a parallel quadruplex (qhras-1, qhras-2). When we introduced in sequence hras-1 or hras-2 two point mutations that block quadruplex formation, transcription increased 5-fold, but when we stabilized the G-quadruplexes by guanidinium phthalocyanines, transcription decreased to 20% of control. By ChIP we found that sequence hras-1 is bound only by MAZ, while hras-2 is bound by MAZ and Sp1: two transcription factors recognizing guanine boxes. We also discovered by EMSA that recombinant MAZ-GST binds to both HRAS quadruplexes, while Sp1-GST only binds to qhras-1. The over-expression of MAZ and Sp1 synergistically activates HRAS transcription, while silencing each gene by RNAi results in a strong down-regulation of transcription. All these data indicate that the HRAS G-quadruplexes behave as transcription repressors. Finally, we designed decoy oligonucleotides mimicking the HRAS quadruplexes, bearing (R)-1-O-[4-(1-Pyrenylethynyl) phenylmethyl] glycerol and LNA modifications to increase their stability and nuclease resistance (G4-decoys). The G4-decoys repressed HRAS transcription and caused a strong antiproliferative effect, mediated by apoptosis, in T24 bladder cancer cells where HRAS is mutated.


Nucleic Acids Research | 2013

MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice

Susanna Cogoi; Sonia Zorzet; Valentina Rapozzi; Imrich Géci; Erik B. Pedersen; Luigi E. Xodo

KRAS mutations are primary genetic lesions leading to pancreatic cancer. The promoter of human KRAS contains a nuclease-hypersensitive element (NHE) that can fold in G4-DNA structures binding to nuclear proteins, including MAZ (myc-associated zinc-finger). Here, we report that MAZ activates KRAS transcription. To knockdown oncogenic KRAS in pancreatic cancer cells, we designed oligonucleotides that mimic one of the G-quadruplexes formed by NHE (G4-decoys). To increase their nuclease resistance, two locked nucleic acid (LNA) modifications were introduced at the 3′-end, whereas to enhance the folding and stability, two polycyclic aromatic hydrocarbon units (TINA or AMANY) were inserted internally, to cap the quadruplex. The most active G4-decoy (2998), which had two para-TINAs, strongly suppressed KRAS expression in Panc-1 cells. It also repressed their metabolic activity (IC50 = 520 nM), and it inhibited cell growth and colony formation by activating apoptosis. We finally injected 2998 and control oligonucleotides 5153, 5154 (2 nmol/mouse) intratumorally in SCID mice bearing a Panc-1 xenograft. After three treatments, 2998 reduced tumor xenograft growth by 64% compared with control and increased the Kaplan–Meier median survival time by 70%. Together, our data show that MAZ-specific G4-decoys mimicking a KRAS quadruplex are promising for pancreatic cancer therapy.


Nucleic Acids Research | 2014

HRAS is silenced by two neighboring G-quadruplexes and activated by MAZ, a zinc-finger transcription factor with DNA unfolding property

Susanna Cogoi; Andrey E. Shchekotikhin; Luigi E. Xodo

The HRAS promoter contains immediately upstream of the transcription start site two neighboring G-elements, each capable of folding into a G-quadruplex structure. We have previously found that these G-quadruplexes bind to the zinc-finger transcription factors MAZ and Sp1. In the present study we have examined the interaction between the HRAS promoter and MAZ, demonstrating for the first time that the protein unfolds the G-quadruplex structures. We also demonstrate that MAZ-GST, in the presence of the complementary strands, promotes a rapid transformation of the two HRAS quadruplexes into duplexes. By a mutational analysis of the HRAS G-elements, we dissected the MAZ-binding sites from the quadruplex-forming motifs, finding that the two neighboring G-quadruplexes bring about a dramatic repression of transcription, in a synergistic manner. We also discovered that the two G-quadruplexes are strong targets for small anticancer molecules. We found that a cell-penetrating anthratiophenedione (ATPD-1), which binds tightly to the G-quadruplexes (ΔT > 15°C), promotes the total extinction of HRAS transcription. In contrast, when one of the two G-quadruplexes was abrogated by point mutations, ATPD-1 repressed transcription by only 50%. Our study provides relevant information for the rationale design of targeted therapy drugs specific for the HRAS oncogene.


Nucleic Acids Research | 2008

Purine twisted-intercalating nucleic acids: a new class of anti-gene molecules resistant to potassium-induced aggregation

Manikandan Paramasivam; Susanna Cogoi; Vyacheslav V. Filichev; Niels Bomholt; Erik Bjerregaard Pedersen; Luigi E. Xodo

Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome.


Journal of Medicinal Chemistry | 2013

Guanidino anthrathiophenediones as G-quadruplex binders: uptake, intracellular localization, and anti-Harvey-Ras gene activity in bladder cancer cells.

Susanna Cogoi; Andrey E. Shchekotikhin; Alexandro Membrino; Yuri B. Sinkevich; Luigi E. Xodo

We prepared a series of anthrathiophenediones (ATPDs) with guanidino-alkyl side chains of different length (compounds 1, 10-13). The aim was to investigate their interaction with DNA and RNA G-quadruplexes, their uptake in malignant and nonmalignant cells, and their capacity to modulate gene expression and inhibit cell growth. Flow cytometry showed that the ATPDs enter more efficiently in malignant T24 bladder cells than in nonmalignant embryonic kidney 293 or fibroblast NIH 3T3 cells. In T24 malignant cells, compound 1, with two ethyl side chains, is taken up by endocytosis, while 12 and 13, with respectively propyl and butyl side chains, are transported by passive diffusion. The designed ATPDs localize in the cytoplasm and nucleus and tightly bind to DNA and RNA G-quadruplexes. They also decrease HRAS expression, increase the cell population in G0/G1, and strongly inhibit proliferation in malignant T24 bladder cells, but not in nonmalignant 293 or NIH 3T3 cells.


Cancer Gene Therapy | 2004

Antiproliferative activity of a triplex-forming oligonucleotide recognizing a Ki- ras polypurine/polypyrimidine motif correlates with protein binding

Susanna Cogoi; Maurizio Ballico; Gian-Maria Bonora; Luigi E. Xodo

The Ki-ras gene is frequently mutated and/or overexpressed in human cancer. Since it is suspected to play a key role in the pathogenesis of many tumors, there is interest to search for strategies aiming at the specific inhibition of this oncogene. In this paper, we investigated the capacity of a 20 mer G-rich oligonucleotide (ODN20) conjugated to high molecular weight monomethoxy polyethylene glycol (MPEG) to inhibit the expression of the Ki-ras gene and the proliferation of pancreatic cancer cells. The conjugate, MPEG ODN20, was designed to form a triplex with a critical pur/pyr sequence located in the promoter of the Ki-ras gene. To make the conjugate resistant to endogenous and exogenous nucleases, five phosphorothioate linkages were introduced in its backbone. Confocal microscopy and FACS experiments showed that MPEG ODN20 had a higher capacity to penetrate the cell membranes and accumulate in the nucleus of Panc-1 cells than ODN20. Incubation of Panc-1 cells with MPEG ODN20 reduced specifically the levels of Ki-ras mRNA and RAS protein p21RAS. A single-dose administration of MPEG ODN20 was sufficient to inhibit cell proliferation by about 50% compared with control. By contrast, the antiproliferative activity of the unconjugated ODN20 analog was found to be not significant. Band-shift and footprinting experiments showed that MPEG ODN20 formed a weak triplex (Kd ∼1.5 μM at 37°C, 50 mM Tris-acetate, pH 7.4, 10 mM NaCl, 10 mM MgCl2, 5 mM spermidine) with the Ki-ras pyr/pur motif, suggesting that its bioactivity can hardly be mediated by a triplex-based mechanism. Here, we provide evidence that, in vitro, ODN20 and MPEG ODN20 competitively inhibit the binding to the Ki-ras pur/pyr motif of a nuclear protein, suggesting that the activity of MPEG ODN20 occurs with an aptameric mechanism. The biological implications of this study are discussed.

Collaboration


Dive into the Susanna Cogoi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik B. Pedersen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manikandan Paramasivam

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge