Susanna K. Eriksson
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanna K. Eriksson.
Chemistry: A European Journal | 2011
Karl Martin Karlsson; Xiao Jiang; Susanna K. Eriksson; Erik Gabrielsson; Håkan Rensmo; Anders Hagfeldt; Licheng Sun
A series of metal-free organic dyes with a core phenoxazine chromophore have been synthesized and tested as sensitizers in dye-sensitized solar cells. Overall conversion efficiencies of 6.03-7.40% were reached under standard AM 1.5G illumination at a light intensity of 100 mW cm(-2) . A clear trend in electron lifetime could be seen; a dye with a furan-conjugated linker showed a shorter lifetime relative to dyes with the acceptor group directly attached to the phenoxazine. The addition of an extra donor unit, which bore insulating alkoxyl chains, in the 7-position of the phenoxazine could increase the lifetime even further and, together with additives in the electrolyte to raise the conduction band, an open circuit voltage of 800 mV could be achieved. From photoelectron spectroscopy and X-ray absorption spectroscopy of the dyes adsorbed on TiO(2) particles, it can be concluded that the excitation is mainly of cyano character (i.e., on average, the dye molecules are standing on, and pointing out, from the surface of TiO(2) particles).
Scientific Reports | 2015
Haining Tian; Johan Oscarsson; Erik O. Gabrielsson; Susanna K. Eriksson; Rebecka Lindblad; Bo Xu; Yan Hao; Gerrit Boschloo; Erik M. J. Johansson; James M. Gardner; Anders Hagfeldt; Håkan Rensmo; Licheng Sun
Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO.
Review of Scientific Instruments | 2014
Susanna K. Eriksson; Maria Hahlin; J. M. Kahk; Ignacio J. Villar-Garcia; Matthew J. Webb; Helena Grennberg; Rositza Yakimova; Håkan Rensmo; Kristina Edström; Anders Hagfeldt; Hans Siegbahn; Marten O. M. Edwards; Patrik G. Karlsson; Klas Backlund; John Åhlund; David J. Payne
High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.
Physical Chemistry Chemical Physics | 2013
Ida Josefsson; Susanna K. Eriksson; Niklas Ottosson; Gunnar Öhrwall; Hans Siegbahn; Anders Hagfeldt; Håkan Rensmo; Olle Björneholm; Michael Odelius
The molecular and electronic structures of aqueous I3(-) and I(-) ions have been investigated through ab initio molecular dynamics (MD) simulations and photoelectron (PE) spectroscopy of the iodine 4d core levels. Against the background of the theoretical simulations, data from our I4d PE measurements are shown to contain evidence of coupled solute-solvent dynamics. The MD simulations reveal large amplitude fluctuations in the I-I distances, which couple to the collective rearrangement of the hydrogen bonding network around the I3(-) ion. Due to the high polarizability of the I3(-) ion, the asymmetric I-I vibration reaches partially dissociated configurations, for which the electronic structure resembles that of I2 + I(-). The charge localization in the I3(-) ion is found to be moderated by hydrogen-bonding. As seen in the PE spectrum, these soft molecular vibrations are important for the electronic properties of the I3(-) ion in solution and may play an important role in its electrochemical function.
Physical Chemistry Chemical Physics | 2016
Susanna K. Eriksson; Ida Josefsson; Hanna Ellis; Anna Amat; Mariachiara Pastore; Johan Oscarsson; Rebecka Lindblad; Anna Eriksson; Erik M. J. Johansson; Gerrit Boschloo; Anders Hagfeldt; Simona Fantacci; Michael Odelius; Håkan Rensmo
The effects of alkoxy chain length in triarylamine based donor-acceptor organic dyes are investigated with respect to the electronic and molecular surface structures on the performance of solar cells and the electron lifetime. The dyes were investigated when adsorbed on TiO2 in a configuration that can be used for dye-sensitized solar cells (DSCs). Specifically, the two dyes D35 and D45 were compared using photoelectron spectroscopy (PES) and density functional theory (DFT) calculations. The differences in solar cell characteristics when longer alkoxy chains are introduced in the dye donor unit are attributed to geometrical changes in dye packing while only minor differences were observed in the electronic structure. A higher dye load was observed for D45 on TiO2. However, D35 based solar cells result in higher photocurrent although the dye load is lower. This is explained by different geometrical structures of the dyes on the surface.
Chemical Communications | 2015
Erik Gabrielsson; Haining Tian; Susanna K. Eriksson; Jiajia Gao; Hong Chen; Fusheng Li; Johan Oscarsson; Junliang Sun; Håkan Rensmo; Lars Kloo; Anders Hagfeldt; Licheng Sun
Dipicolinic acid was investigated as a new anchoring group for DSSCs. A pilot dye (PD2) bearing this new anchoring group was found to adsorb significantly stronger to TiO2 than its cyanoacrylic acid analogue. The electrolyte composition was found to have a strong effect on the photoelectrochemical properties of the adsorbed dye in the device, allowing the dye LUMO energy to be tuned by 0.5 eV. Using a pyridine-free electrolyte, panchromatic absorption of the dye on TiO2 extending to 900 nm has been achieved. Solar cells using PD2 and a Co(bpy)3 based electrolyte showed unique stability under simulated sunlight and elevated temperatures.
Journal of Physical Chemistry B | 2014
Susanna K. Eriksson; Ida Josefsson; Niklas Ottosson; Gunnar Öhrwall; Olle Björneholm; Hans Siegbahn; Anders Hagfeldt; Michael Odelius; Håkan Rensmo
We present synchrotron-based I4d photoelectron spectroscopy experiments of solutions from LiI and LiI3 in water, ethanol, and acetonitrile. The experimentally determined solvent-induced binding energy shifts (SIBES) for the monatomic I(–) anion are compared to predictions from simple Born theory, PCM calculations, as well as multiconfigurational quantum chemical spectral calculations from geometries obtained through molecular dynamics of solvated clusters. We show that the SIBES for I(–) explicitly depend on the details of the hydrogen bonding configurations of the solvent to the I(–) and that static continuum models such as the Born model cannot capture the trends in the SIBES observed both in experiments and in higher-level calculations. To extend the discussion to more complex polyatomic anions, we also performed experiments on I3(–) and I(–)/I3(–) mixtures in different solvents and the results are analyzed in the perspective of SIBES. The experimental SIBES values indicate that the solvation effects even for such similar anions as I(–) and I3(–) can be rather different in nature.
Review of Scientific Instruments | 2015
Julia Maibach; Chao Xu; Susanna K. Eriksson; John Åhlund; Torbjörn Gustafsson; Hans Siegbahn; Håkan Rensmo; Kristina Edström; Maria Hahlin
We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO4 in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N2 environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.
Review of Scientific Instruments | 2018
Anna Regoutz; Manfred Mascheck; Tomas Wiell; Susanna K. Eriksson; Cristopher Liljenberg; Kornelius Tetzner; Benjamin A. D. Williamson; David O. Scanlon; Paul Palmgren
Hard X-ray photoelectron spectroscopy (HAXPES) has seen continuous development since the first experiments in the 1970s. HAXPES systems are predominantly located at synchrotron sources due to low photoionization cross sections necessitating high X-ray intensities, which limits the techniques availability to a wide range of users and potential applications. Here, a new laboratory-based instrument capable of delivering monochromated X-rays with an energy of 9.25 keV and a microfocused 30 × 45 μm2 X-ray spot is introduced. The system gives an excellent energy resolution of below 500 meV coupled with good X-ray intensity. It allows stable measurements under grazing incidence conditions to maximise signal intensities. This article outlines the instrument behavior, showcases applications including bulk and multilayer measurements, and describes the overall performance of the spectrometer. This system presents an alternative to synchrotron-based experimental end stations and will help expand the number and range of HAXPES experiments performed in the future.
Journal of Physical Chemistry C | 2012
Rebecka Schölin; Martin Karlsson; Susanna K. Eriksson; Hans Siegbahn; Erik M. J. Johansson; Håkan Rensmo