Suzanne M. Cloonan
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suzanne M. Cloonan.
Journal of Clinical Investigation | 2014
Kenji Mizumura; Suzanne M. Cloonan; Kiichi Nakahira; Abhiram R. Bhashyam; Morgan Cervo; Tohru Kitada; Kimberly Glass; Caroline A. Owen; Ashfaq Mahmood; George R. Washko; Shu Hashimoto; Stefan W. Ryter; Augustine M. K. Choi
The pathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear, but involves loss of alveolar surface area (emphysema) and airway inflammation (bronchitis) as the consequence of cigarette smoke (CS) exposure. Previously, we demonstrated that autophagy proteins promote lung epithelial cell death, airway dysfunction, and emphysema in response to CS; however, the underlying mechanisms have yet to be elucidated. Here, using cultured pulmonary epithelial cells and murine models, we demonstrated that CS causes mitochondrial dysfunction that is associated with a reduction of mitochondrial membrane potential. CS induced mitophagy, the autophagy-dependent elimination of mitochondria, through stabilization of the mitophagy regulator PINK1. CS caused cell death, which was reduced by administration of necrosis or necroptosis inhibitors. Genetic deficiency of PINK1 and the mitochondrial division/mitophagy inhibitor Mdivi-1 protected against CS-induced cell death and mitochondrial dysfunction in vitro and reduced the phosphorylation of MLKL, a substrate for RIP3 in the necroptosis pathway. Moreover, Pink1(-/-) mice were protected against mitochondrial dysfunction, airspace enlargement, and mucociliary clearance (MCC) disruption during CS exposure. Mdivi-1 treatment also ameliorated CS-induced MCC disruption in CS-exposed mice. In human COPD, lung epithelial cells displayed increased expression of PINK1 and RIP3. These findings implicate mitophagy-dependent necroptosis in lung emphysematous changes in response to CS exposure, suggesting that this pathway is a therapeutic target for COPD.
Journal of Clinical Investigation | 2013
Hilaire C. Lam; Suzanne M. Cloonan; Abhiram R. Bhashyam; Jeffery A. Haspel; Anju Singh; J. Fah Sathirapongsasuti; Morgan Cervo; Hongwei Yao; Anna L. Chung; Kenji Mizumura; Chang Hyeok An; Bin Shan; Jonathan Franks; Kathleen J. Haley; Caroline A. Owen; Yohannes Tesfaigzi; George R. Washko; John Quackenbush; Edwin K. Silverman; Irfan Rahman; Hong Pyo Kim; Ashfaq Mahmood; Shyam Biswal; Stefan W. Ryter; Augustine M. K. Choi
Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6-/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1-/-, Map1lc3B-/-, and Hdac6-/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.
Molecules and Cells | 2013
Stefan W. Ryter; Suzanne M. Cloonan; Augustine M. K. Choi
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
Nature Medicine | 2016
Suzanne M. Cloonan; Kimberly Glass; Maria E. Laucho-Contreras; Abhiram R. Bhashyam; Morgan Cervo; Maria A. Pabon; Csaba Konràd; Francesca Polverino; Ilias I. Siempos; Elizabeth Perez; Kenji Mizumura; Manik C. Ghosh; Harikrishnan Parameswaran; Niamh C Williams; Kristen T Rooney; Zhihua Chen; Monica P. Goldklang; Guo-Cheng Yuan; Stephen C. Moore; Dawn L. DeMeo; Tracey A. Rouault; Jeanine D'Armiento; Eric A. Schon; Giovanni Manfredi; John Quackenbush; Ashfaq Mahmood; Edwin K. Silverman; Caroline A. Owen; Augustine M. K. Choi
Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element–binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD.
Antioxidants & Redox Signaling | 2014
Kiichi Nakahira; Suzanne M. Cloonan; Kenji Mizumura; Augustine M. K. Choi; Stefan W. Ryter
SIGNIFICANCE Autophagy is a fundamental cellular process that functions in the turnover of subcellular organelles and protein. Activation of autophagy may represent a cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Autophagy can increase survival during nutrient deficiency and play a multifunctional role in host defense, by promoting pathogen clearance and modulating innate and adaptive immune responses. RECENT ADVANCES Autophagy has been described as an inducible response to oxidative stress. Once believed to represent a random process, recent studies have defined selective mechanisms for cargo assimilation into autophagosomes. Such mechanisms may provide for protein aggregate detoxification and mitochondrial homeostasis during oxidative stress. Although long studied as a cellular phenomenon, recent advances implicate autophagy as a component of human diseases. Altered autophagy phenotypes have been observed in various human diseases, including lung diseases such as chronic obstructive lung disease, cystic fibrosis, pulmonary hypertension, and idiopathic pulmonary fibrosis. CRITICAL ISSUES Although autophagy can represent a pro-survival process, in particular, during nutrient starvation, its role in disease pathogenesis may be multifunctional and complex. The relationship of autophagy to programmed cell death pathways is incompletely defined and varies with model system. FUTURE DIRECTIONS Activation or inhibition of autophagy may be used to alter the progression of human diseases. Further resolution of the mechanisms by which autophagy impacts the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway.
Autophagy | 2014
Suzanne M. Cloonan; Hilaire C. Lam; Stefan W. Ryter; Augustine M. K. Choi
Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) associated with respiratory epithelial cell cilia shortening and impaired mucociliary clearance (MCC). The underlying cellular and molecular mechanisms for CS-associated cilia shortening have remained incompletely understood. We have previously demonstrated increased autophagy in the lungs of COPD patients; however, whether or not this process is selective for specific autophagic targets in the lung was not elucidated. Based on observations that increased morphological and biochemical indicators of autophagy correlate with cilia shortening in our models, we posited that autophagy might regulate cilia length in response to CS in the lung. We demonstrate that CS-induced cilia shortening occurs through an autophagy-dependent mechanism mediated by the deacetylase HDAC6 (histone deacetylase 6). Autophagy-impaired (Becn1(+/-), map1lc3b(-/-), or Hdac6(-/Y)) mice resist CS-induced cilia shortening. Furthermore, cilia components are identified as autophagic substrates during CS exposure. Assessment of airway cilia function using a 3D MCC assay demonstrates that Becn1(+/-), map1lc3b(-/-), and Hdac6(-/Y) mice or mice injected with the HDAC6 inhibitor tubastatin A are protected from CS-associated mucociliary dysfunction. We concluded that an autophagy-dependent pathway regulates cilia length during CS exposure, which identifies new pathways and targets in COPD.Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) associated with respiratory epithelial cell cilia shortening and impaired mucociliary clearance (MCC). The underlying cellular and molecular mechanisms for CS-associated cilia shortening have remained incompletely understood. We have previously demonstrated increased autophagy in the lungs of COPD patients; however, whether or not this process is selective for specific autophagic targets in the lung was not elucidated. Based on observations that increased morphological and biochemical indicators of autophagy correlate with cilia shortening in our models, we posited that autophagy might regulate cilia length in response to CS in the lung. We demonstrate that CS-induced cilia shortening occurs through an autophagy-dependent mechanism mediated by the deacetylase HDAC6 (histone deacetylase 6). Autophagy-impaired (Becn1+/−, map1lc3b−/−, or Hdac6-/Y) mice resist CS-induced cilia shortening. Furthermore, cilia components are identified as autophagic substrates during CS exposure. Assessment of airway cilia function using a 3D MCC assay demonstrates that Becn1+/−, map1lc3b−/−, and Hdac6-/Y mice or mice injected with the HDAC6 inhibitor tubastatin A are protected from CS-associated mucociliary dysfunction. We concluded that an autophagy-dependent pathway regulates cilia length during CS exposure, which identifies new pathways and targets in COPD.
International Journal of Hypertension | 2012
Myrna Constantin; Alexander J. S. Choi; Suzanne M. Cloonan; Stefan W. Ryter
Heme oxygenase (HO), a catabolic enzyme, provides the rate-limiting step in the oxidative breakdown of heme, to generate carbon monoxide (CO), iron, and biliverdin-IXα. Induction of the inducible form, HO-1, in tissues is generally regarded as a protective mechanism. Over the last decade, considerable progress has been made in defining the therapeutic potential of HO-1 in a number of preclinical models of lung tissue injury and disease. Likewise, tissue-protective effects of CO, when applied at low concentration, have been observed in many of these models. Recent studies have expanded this concept to include chemical CO-releasing molecules (CORMs). Collectively, salutary effects of the HO-1/CO system have been demonstrated in lung inflammation/acute lung injury, lung and vascular transplantation, sepsis, and pulmonary hypertension models. The beneficial effects of HO-1/CO are conveyed in part through the inhibition or modulation of inflammatory, apoptotic, and proliferative processes. Recent advances, however, suggest that the regulation of autophagy and the preservation of mitochondrial homeostasis may serve as additional candidate mechanisms. Further preclinical and clinical trials are needed to ascertain the therapeutic potential of HO-1/CO in human clinical disease.
Journal of Clinical Investigation | 2016
Suzanne M. Cloonan; Augustine M. K. Choi
Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cells most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.
Scientific Reports | 2017
Jarrett Morrow; Xiaobo Zhou; Taotao Lao; Zhiqiang Jiang; Dawn L. DeMeo; Michael H. Cho; Weiliang Qiu; Suzanne M. Cloonan; Victor Pinto-Plata; Bartholome Celli; Nathaniel Marchetti; Gerard J. Criner; Raphael Bueno; George R. Washko; Kimberly Glass; John Quackenbush; Augustine M. K. Choi; Edwin K. Silverman; Craig P. Hersh
In comparison to genome-wide association studies (GWAS), there has been poor replication of gene expression studies in chronic obstructive pulmonary disease (COPD). We performed microarray gene expression profiling on a large sample of resected lung tissues from subjects with severe COPD. Comparing 111 COPD cases and 40 control smokers, 204 genes were differentially expressed; none were at significant GWAS loci. The top differentially expressed gene was HMGB1, which interacts with AGER, a known COPD GWAS gene. Differentially expressed genes showed enrichment for putative interactors of the first three identified COPD GWAS genes IREB2, HHIP, and FAM13A, based on gene sets derived from protein and RNA binding studies, RNA-interference, a murine smoking model, and expression quantitative trait locus analyses. The gene module most highly associated for COPD in Weighted Gene Co-Expression Network Analysis (WGCNA) was enriched for B cell pathways, and shared seventeen genes with a mouse smoking model and twenty genes with previous emphysema studies. As in other common diseases, genes at COPD GWAS loci were not differentially expressed; however, using a combination of network methods, experimental studies and careful phenotype definition, we found differential expression of putative interactors of these genes, and we replicated previous human and mouse microarray results.
American Journal of Respiratory and Critical Care Medicine | 2017
Suzanne M. Cloonan; Sharon Mumby; Ian M. Adcock; Augustine M. K. Choi; Kian Fan Chung; Gregory J. Quinlan
The “Iron”-y of Iron Overload and Iron Deficiency in Chronic Obstructive Pulmonary Disease Suzanne M. Cloonan, Sharon Mumby, Ian M. Adcock, Augustine M. K. Choi, Kian Fan Chung, and Gregory J. Quinlan Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; Airway Disease and Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom; and New York-Presbyterian Hospital, New York, New York