Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sven Enterlein is active.

Publication


Featured researches published by Sven Enterlein.


PLOS Pathogens | 2006

Two Key Residues in EphrinB3 Are Critical for Its Use as an Alternative Receptor for Nipah Virus

Oscar A. Negrete; Mike C. Wolf; Hector C. Aguilar; Sven Enterlein; Wei-wei Wang; Elke Mühlberger; Stephen V. Su; Andrea Bertolotti-Ciarlet; Ramon Flick; Benhur Lee

EphrinB2 was recently discovered as a functional receptor for Nipah virus (NiV), a lethal emerging paramyxovirus. Ephrins constitute a class of homologous ligands for the Eph class of receptor tyrosine kinases and exhibit overlapping expression patterns. Thus, we examined whether other ephrins might serve as alternative receptors for NiV. Here, we show that of all known ephrins (ephrinA1–A5 and ephrinB1–B3), only the soluble Fc-fusion proteins of ephrinB3, in addition to ephrinB2, bound to soluble NiV attachment protein G (NiV-G). Soluble NiV-G bound to cell surface ephrinB3 and B2 with subnanomolar affinities (Kd = 0.58 nM and 0.06 nM for ephrinB3 and B2, respectively). Surface plasmon resonance analysis indicated that the relatively lower affinity of NiV-G for ephrinB3 was largely due to a faster off-rate (Koff = 1.94 × 10−3 s−1 versus 1.06 × 10−4 s−1 for ephrinB3 and B2, respectively). EphrinB3 was sufficient to allow for viral entry of both pseudotype and live NiV. Soluble ephrinB2 and B3 were able to compete for NiV-envelope-mediated viral entry on both ephrinB2- and B3-expressing cells, suggesting that NiV-G interacts with both ephrinB2 and B3 via an overlapping site. Mutational analysis indicated that the Leu–Trp residues in the solvent exposed G–H loop of ephrinB2 and B3 were critical determinants of NiV binding and entry. Indeed, replacement of the Tyr–Met residues in the homologous positions in ephrinB1 with Leu–Trp conferred NiV receptor activity to ephrinB1. Thus, ephrinB3 is a bona fide alternate receptor for NiV entry, and two residues in the G–H loop of the ephrin B-class ligands are critical determinants of NiV receptor activity.


Antimicrobial Agents and Chemotherapy | 2006

VP35 Knockdown Inhibits Ebola Virus Amplification and Protects against Lethal Infection in Mice

Sven Enterlein; Kelly L. Warfield; Dana L. Swenson; David A. Stein; Jeffery L. Smith; C. Scott Gamble; Andrew D. Kroeker; Patrick L. Iversen; Sina Bavari; Elke Mühlberger

ABSTRACT Phosphorodiamidate morpholino oligomers (PMO) are a class of uncharged single-stranded DNA analogs modified such that each subunit includes a phosphorodiamidate linkage and morpholine ring. PMO antisense agents have been reported to effectively interfere with the replication of several positive-strand RNA viruses in cell culture. The filoviruses, Marburg virus and Ebola virus (EBOV), are negative-strand RNA viruses that cause up to 90% lethality in human outbreaks. There is currently no commercially available vaccine or efficacious therapeutic for any filovirus. In this study, PMO conjugated to arginine-rich cell-penetrating peptide (P-PMO) and nonconjugated PMO were assayed for the ability to inhibit EBOV infection in cell culture and in a mouse model of lethal EBOV infection. A 22-mer P-PMO designed to base pair with the translation start site region of EBOV VP35 positive-sense RNA generated sequence-specific and time- and dose-dependent inhibition of EBOV amplification in cell culture. The same oligomer provided complete protection to mice when administered before or after an otherwise lethal infection of EBOV. A corresponding nonconjugated PMO, as well as nonconjugated truncated versions of 16 and 19 base residues, provided length-dependent protection to mice when administered prophylactically. Together, these data suggest that antisense PMO and P-PMO have the potential to control EBOV infection and are promising therapeutic candidates.


Antiviral Research | 2009

Development of a broad-spectrum antiviral with activity against Ebola virus.

M. J. Aman; Michael Kinch; K. Warfield; T. Warren; Abdul Yunus; Sven Enterlein; E. Stavale; P. F. Wang; Shaojing Chang; Q. S. Tang; K. Porter; Michael Goldblatt; S. Bavari

We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.


Archives of Virology | 2013

Virus nomenclature below the species level: a standardized nomenclature for natural variants of viruses assigned to the family Filoviridae

Jens H. Kuhn; Yiming Bao; Sina Bavari; Stephan Becker; Steven B. Bradfute; J. Rodney Brister; Alexander Bukreyev; Kartik Chandran; Robert A. Davey; Olga Dolnik; John M. Dye; Sven Enterlein; Lisa E. Hensley; Anna N. Honko; Peter B. Jahrling; Karl M. Johnson; Gary P. Kobinger; Eric Leroy; Mark S. Lever; Elke Mühlberger; Sergey V. Netesov; Gene G. Olinger; Gustavo Palacios; Jean L. Patterson; Janusz T. Paweska; Louise Pitt; Sheli R. Radoshitzky; Erica Ollmann Saphire; Sophie J. Smither; Robert Swanepoel

The task of international expert groups is to recommend the classification and naming of viruses. The International Committee on Taxonomy of Viruses Filoviridae Study Group and other experts have recently established an almost consistent classification and nomenclature for filoviruses. Here, further guidelines are suggested to include their natural genetic variants. First, this term is defined. Second, a template for full-length virus names (such as “Ebola virus H.sapiens-tc/COD/1995/Kikwit-9510621”) is proposed. These names contain information on the identity of the virus (e.g., Ebola virus), isolation host (e.g., members of the species Homo sapiens), sampling location (e.g., Democratic Republic of the Congo (COD)), sampling year, genetic variant (e.g., Kikwit), and isolate (e.g., 9510621). Suffixes are proposed for individual names that clarify whether a given genetic variant has been characterized based on passage zero material (-wt), has been passaged in tissue/cell culture (-tc), is known from consensus sequence fragments only (-frag), or does (most likely) not exist anymore (-hist). We suggest that these comprehensive names are to be used specifically in the methods section of publications. Suitable abbreviations, also proposed here, could then be used throughout the text, while the full names could be used again in phylograms, tables, or figures if the contained information aids the interpretation of presented data. The proposed system is very similar to the well-known influenzavirus nomenclature and the nomenclature recently proposed for rotaviruses. If applied consistently, it would considerably simplify retrieval of sequence data from electronic databases and be a first important step toward a viral genome annotation standard as sought by the National Center for Biotechnology Information (NCBI). Furthermore, adoption of this nomenclature would increase the general understanding of filovirus-related publications and presentations and improve figures such as phylograms, alignments, and diagrams. Most importantly, it would counter the increasing confusion in genetic variant naming due to the identification of ever more sequences through technological breakthroughs in high-throughput sequencing and environmental sampling.


Antimicrobial Agents and Chemotherapy | 2010

Antiviral Activity of a Small-Molecule Inhibitor of Filovirus Infection

Travis K. Warren; Kelly L. Warfield; Jay Wells; Sven Enterlein; Mark A. Smith; Gordon Ruthel; Abdul Yunus; Michael Kinch; Michael Goldblatt; Mohammad Javad Aman; Sina Bavari

ABSTRACT There exists an urgent need to develop licensed drugs and vaccines for the treatment or prevention of filovirus infections. FGI-103 is a low-molecular-weight compound that was discovered through an invitro screening assay utilizing a variant of Zaireebolavirus (ZEBOV) that expresses green fluorescent protein. Invitro analyses demonstrated that FGI-103 also exhibits antiviral activity against wild-type ZEBOV and Sudanebolavirus, as well as Marburgvirus (MARV) strains Ci67 and Ravn. Invivo administration of FGI-103 as a single intraperitoneal dose of 10 mg/kg delivered 24 h after infection is sufficient to completely protect mice against a lethal challenge with a mouse-adapted strain of either ZEBOV or MARV-Ravn. In a murine model of ZEBOV infection, delivery of FGI-103 reduces viremia and the viral burden in kidney, liver, and spleen tissues and is associated with subdued and delayed proinflammatory cytokine responses and tissue pathology. Taken together, these results identify a promising antiviral therapeutic candidate for the treatment of filovirus infections.


Archives of Virology | 2013

Virus nomenclature below the species level: A standardized nomenclature for filovirus strains and variants rescued from cDNA

Jens H. Kuhn; Yiming Bao; Sina Bavari; Stephan Becker; Steven B. Bradfute; Kristina Brauburger; J. Rodney Brister; Alexander Bukreyev; Yíngyún Caì; Kartik Chandran; Robert A. Davey; Olga Dolnik; John M. Dye; Sven Enterlein; Jean-Paul Gonzalez; Pierre Formenty; Alexander N. Freiberg; Lisa E. Hensley; Thomas Hoenen; Anna N. Honko; Georgy M. Ignatyev; Peter B. Jahrling; Karl M. Johnson; Hans-Dieter Klenk; Gary P. Kobinger; Matthew G. Lackemeyer; Eric M. Leroy; Mark S. Lever; Elke Mühlberger; Sergewy V. Netesov

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to “Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1” (with the suffix “rec” identifying the recombinant nature of the virus and “abc1” being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as “EBOV H.sap/COD/95/Kik-abc1”) and abbreviations (such as “EBOV/Kik-abc1”) could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.


Journal of Virology | 2006

Rescue of Recombinant Marburg Virus from cDNA Is Dependent on Nucleocapsid Protein VP30

Sven Enterlein; Viktor E. Volchkov; Michael Weik; Larissa Kolesnikova; Valentina A. Volchkova; Hans-Dieter Klenk; Elke Mühlberger

ABSTRACT Here we report recovery of infectious Marburg virus (MARV) from a full-length cDNA clone. Compared to the wild-type virus, recombinant MARV showed no difference in terms of morphology of virus particles, intracellular distribution in infected cells, and growth kinetics. The nucleocapsid protein VP30 of MARV and Ebola virus (EBOV) contains a Zn-binding motif which is important for the function of VP30 as a transcriptional activator in EBOV, whereas its role for MARV is unclear. It has been reported previously that MARV VP30 is able to support transcription in an EBOV-specific minigenome system. When the Zn-binding motif was destroyed, MARV VP30 was shown to be inactive in the EBOV system. While it was not possible to rescue recombinant MARV when the VP30 plasmid was omitted from transfection, MARV VP30 with a destroyed Zn-binding motif and EBOV VP30 were able to mediate virus recovery. In contrast, rescue of recombinant EBOV was not supported by EBOV VP30 containing a mutated Zn-binding domain.


Viruses | 2014

Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

Jens H. Kuhn; Kristian G. Andersen; Yiming Bao; Sina Bavari; Stephan Becker; Richard S. Bennett; Nicholas H. Bergman; Olga Blinkova; Steven B. Bradfute; J. Rodney Brister; Alexander Bukreyev; Kartik Chandran; Alexander A. Chepurnov; Robert A. Davey; Ralf G. Dietzgen; Norman A. Doggett; Olga Dolnik; John M. Dye; Sven Enterlein; Paul W. Fenimore; Pierre Formenty; Alexander N. Freiberg; Robert F. Garry; Nicole L. Garza; Stephen K. Gire; Jean-Paul Gonzalez; Anthony Griffiths; Christian T. Happi; Lisa E. Hensley; Andrew S. Herbert

Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.


Virology | 2013

The L-VP35 and L-L interaction domains reside in the amino terminus of the Ebola virus L protein and are potential targets for antivirals.

Martina Trunschke; Dominik Conrad; Sven Enterlein; Judith Olejnik; Kristina Brauburger; Elke Mühlberger

The Ebola virus (EBOV) RNA-dependent RNA polymerase (RdRp) complex consists of the catalytic subunit of the polymerase, L, and its cofactor VP35. Using immunofluorescence analysis and coimmunoprecipitation assays, we mapped the VP35 binding site on L. A core binding domain spanning amino acids 280-370 of L was sufficient to mediate weak interaction with VP35, while the entire N-terminus up to amino acid 380 was required for strong VP35-L binding. Interestingly, the VP35 binding site overlaps with an N-terminal L homo-oligomerization domain in a non-competitive manner. N-terminal L deletion mutants containing the VP35 binding site were able to efficiently block EBOV replication and transcription in a minigenome system suggesting the VP35 binding site on L as a potential target for the development of antivirals.


Archives of Virology | 2013

Virus nomenclature below the species level: a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae.

Jens H. Kuhn; Yiming Bao; Sina Bavari; Stephan Becker; Steven B. Bradfute; J. Rodney Brister; Alexander Bukreyev; Yíngyún Caì; Kartik Chandran; Robert A. Davey; Olga Dolnik; John M. Dye; Sven Enterlein; Jean-Paul Gonzalez; Pierre Formenty; Alexander N. Freiberg; Lisa E. Hensley; Anna N. Honko; Georgy M. Ignatyev; Peter B. Jahrling; Karl M. Johnson; Hans-Dieter Klenk; Gary P. Kobinger; Matthew G. Lackemeyer; Eric Leroy; Mark S. Lever; Loreen L. Lofts; Elke Mühlberger; Sergey V. Netesov; Gene G. Olinger

The International Committee on Taxonomy of Viruses (ICTV) organizes the classification of viruses into taxa, but is not responsible for the nomenclature for taxa members. International experts groups, such as the ICTV Study Groups, recommend the classification and naming of viruses and their strains, variants, and isolates. The ICTV Filoviridae Study Group has recently introduced an updated classification and nomenclature for filoviruses. Subsequently, and together with numerous other filovirus experts, a consistent nomenclature for their natural genetic variants and isolates was developed that aims at simplifying the retrieval of sequence data from electronic databases. This is a first important step toward a viral genome annotation standard as sought by the US National Center for Biotechnology Information (NCBI). Here, this work is extended to include filoviruses obtained in the laboratory by artificial selection through passage in laboratory hosts. The previously developed template for natural filovirus genetic variant naming ( ///-) is retained, but it is proposed to adapt the type of information added to each field for laboratory animal-adapted variants. For instance, the full-length designation of an Ebola virus Mayinga variant adapted at the State Research Center for Virology and Biotechnology “Vector” to cause disease in guinea pigs after seven passages would be akin to “Ebola virus VECTOR/C.porcellus-lab/COD/1976/Mayinga-GPA-P7”. As was proposed for the names of natural filovirus variants, we suggest using the full-length designation in databases, as well as in the method section of publications. Shortened designations (such as “EBOV VECTOR/C.por/COD/76/May-GPA-P7”) and abbreviations (such as “EBOV/May-GPA-P7”) could be used in the remainder of the text depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.

Collaboration


Dive into the Sven Enterlein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly L. Warfield

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Sina Bavari

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Alexander Bukreyev

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alexander N. Freiberg

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Anna N. Honko

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

J. Rodney Brister

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jens H. Kuhn

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge