Svetlana E. Belova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Svetlana E. Belova.
Applied and Environmental Microbiology | 2006
Svetlana N. Dedysh; T. A. Pankratov; Svetlana E. Belova; Irina S. Kulichevskaya; Werner Liesack
ABSTRACT The Bacteria community composition in an acidic Sphagnum peat bog (pH 3.9 to 4.5) was characterized by a combination of 16S rRNA gene clone library analysis, rRNA-targeted fluorescence in situ hybridization (FISH), and cultivation. Among 84 environmental 16S rRNA gene clones, a set of only 16 cloned sequences was closely related (≥95% similarity) to taxonomically described organisms. Main groups of clones were affiliated with the Acidobacteria (24 clones), Alphaproteobacteria (20), Verrucomicrobia (13), Actinobacteria (8), Deltaproteobacteria (4), Chloroflexi (3), and Planctomycetes (3). The proportion of cells that hybridized with oligonucleotide probes specific for members of the domains Bacteria (EUB338-mix) and Archaea (ARCH915 and ARC344) accounted for only 12 to 22% of the total cell counts. Up to 24% of the EUB338-positive cells could be assigned by FISH to specific bacterial phyla. Alphaproteobacteria and Planctomycetes were the most numerous bacterial groups (up to 1.3 × 107 and 1.1 × 107 cells g−1 peat, respectively). In contrast to conventional plating techniques, a novel biofilm-mediated enrichment approach allowed us to isolate some representatives of predominant Bacteria groups, such as Acidobacteria and Planctomycetes. This novel strategy has great potential to enable the isolation of a significant proportion of the peat bog bacterial diversity.
Environmental Microbiology Reports | 2011
Svetlana E. Belova; Mohamed Baani; Natalia E. Suzina; Paul L. E. Bodelier; Werner Liesack; Svetlana N. Dedysh
Representatives of the genus Methylocystis are traditionally considered to be obligately methanotrophic bacteria, which are incapable of growth on multicarbon substrates. Here, we describe a novel member of this genus, strain H2s, which represents a numerically abundant and ecologically important methanotroph population in northern Sphagnum-dominated wetlands. This isolate demonstrates a clear preference for growth on methane but is able to grow slowly on acetate in the absence of methane. Strain H2s possesses both forms of methane monooxygenase (particulate and soluble MMO) and a well-developed system of intracytoplasmic membranes (ICM). In cells grown for several transfers on acetate, these ICM are maintained, although in a reduced form, and mRNA transcripts of particulate MMO are detectable. These cells resume their growth on methane faster than those kept for the same period of time without any substrate. Growth on acetate leads to a major shift in the phospholipid fatty acid composition. The re-examination of all type strains of the validly described Methylocystis species showed that Methylocystis heyeri H2(T) and Methylocystis echinoides IMET10491(T) are also capable of slow growth on acetate. This capability might represent an important part of the survival strategy of Methylocystis spp. in environments where methane availability is variable or limited.
International Journal of Systematic and Evolutionary Microbiology | 2010
Peter F. Dunfield; Svetlana E. Belova; Alexey Vorobev; Sabrina L. Cornish; Svetlana N. Dedysh
An aerobic, methanotrophic bacterium, designated KYG(T), was isolated from a forest soil in Germany. Cells of strain KYG(T) were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly-β-hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG(T) grew at pH 5.2-7.2 and 2-33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C(18 : 1)ω7c (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG(T) belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the obligate methanotroph Methylocapsa acidiphila B2(T) (98.1 % 16S rRNA gene sequence similarity and 84.7 % pmoA sequence similarity). Unlike Methylocapsa acidiphila B2(T), which grows only on methane and methanol, strain KYG(T) was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus Methylocella, but the genus Methylocella does not produce pMMO or ICMs. Strain KYG(T) differed from Methylocapsa acidiphila B2(T) on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, Methylocapsa aurea sp. nov., to accommodate this bacterium. The type strain is KYG(T) (=DSM 22158(T) =VKM B-2544(T)).
Microbiology | 2006
Svetlana E. Belova; T. A. Pankratov; Svetlana N. Dedysh
Bacteria of the genus Burkholderia are a typical component of the microbial complex of Sphagnum peat bogs and constitute a substantial portion of the aerobic chemoorganotrophic isolates which are routinely obtained from these environments on an acidic nutrient media. The ecophysiological characteristics of the 27 strains of such organisms, which were isolated from the peat of acidic Sphagnum bogs of the boreal and tundra zones of Russia, Canada, and Estonia, were investigated in the present study. Most of the Burkholderia strains isolated from these bogs were phylogenetically close to the species B. glathei, B. phenazinium, B. fungorum, and B. caryophylli, the typical inhabitants of soil and plant rhizosphere. The bog isolates utilized a broad range of substrates as carbon and energy sources, including organic acids, sugars, polyalcohols, and certain aromatic compounds. All the strains studied were capable of growth on nitrogen-free media. They developed in the pH range of 3.5 to 7.4 and from 3 to 37°C, with the optima at pH 5–7 and 11–23°C, respectively. They were therefore moderately acidophilic, psychroactive, dinitrogen-fixing microorganisms well adapted to the conditions of acidic northern Sphagnum bogs.
Microbiology | 2005
T. A. Pankratov; Svetlana E. Belova; Svetlana N. Dedysh
The microbial population of sphagnum peat bogs of northern Russia was analyzed with respect to the presence and cell numbers of representatives of particular phylogenetic groups of prokaryotes by means of in situ hybridization with fluorescently labeled group-specific rRNA-targeted oligonucleotide probes with broad detection spectra. The total number of cells that hybridized with universal Archaea- and Bacteria-specific probes varied, in peat samples of different bogs, from 45 to 83% of the number of cells revealed by DAPI staining. Down the bog profiles, the total number of prokaryotes and the fraction of archaea among them increased. Application of a set of oligonucleotide probes showed that the number of microorganisms belonging to such phylogenetic lineages of the domain Bacteria as the phyla Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, and Planctomycetes constituted, in total, 14.0–26.5% of the number of eubacteria detected in the samples. Among the bacteria identified in the peat samples, the most abundant were representatives of the classes Alphaproteobacteria and Betaproteobacteria and the phyla Acidobacteria, Bacteroidetes, and Actinobacteria.
Microbiology | 2007
Irina S. Kulichevskaya; Svetlana E. Belova; V. V. Kevbrin; Svetlana N. Dedysh; G. A. Zavarzin
Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 × 107 cells ml−1. About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Planctomycetes. The population sizes of the Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of the Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of the Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.
International Journal of Systematic and Evolutionary Microbiology | 2013
Svetlana E. Belova; Irina S. Kulichevskaya; Paul L. E. Bodelier; Svetlana N. Dedysh
A novel species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2s(T) and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s(T) and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s(T) and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0-6.5) and at 8-37 °C (optimum 25-30 °C). The major fatty acids are C18 : 1ω8c, C18 : 1ω7c and C16 : 1ω7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2s(T) and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3 % similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2s(T) and S284 are classified as members of a novel species, for which the name Methylocystis bryophila sp. nov. is proposed; strain H2s(T) ( = DSM 21852(T) = VKM B-2545(T)) is the type strain.
International Journal of Systematic and Evolutionary Microbiology | 2009
Svetlana E. Belova; T. A. Pankratov; Ekaterina N. Detkova; Elena N. Kaparullina; Svetlana N. Dedysh
Three obligately aerobic, heterotrophic bacteria, designated strains WM1T, TPB606T and TPB621, were isolated from acidic Sphagnum-dominated tundra and Siberian wetlands in Russia. Cells of these isolates were Gram-negative, non-motile coccobacilli that occurred singly, in pairs or in chains, and were covered by large capsules. The novel strains were moderately acidophilic and psychrotolerant organisms capable of growth at pH 3.0-7.6 and 2-30 degrees C. Cells contained numerous intracellular poly-beta-hydroxybutyrate granules (3-4 per cell). The major cellular fatty acid was cyclo C19:0omega8c and the predominant quinone was Q-10. Strains TPB606T and TPB621, isolated from Siberian wetland, possessed almost identical 16S rRNA gene sequences and shared 97.2% sequence similarity with tundra strain WM1T. The three strains were shown to belong to the Alphaproteobacteria, but were related only distantly to the type strains of acidophilic bacteria Acidisphaera rubrifaciens (93.4-94.3% 16S rRNA gene sequence similarity), Rhodopila globiformis (92.2-93.3%), and members of the genera Acidiphilium (91.3-93%) and Acidocella (91.8-92.4%). The DNA G+C contents of the novel strains were 60.5-61.9 mol%. The low levels of DNA-DNA relatedness (37%) and a number of phenotypic differences between the Siberian strains TPB606T and TPB621 and the tundra strain WM1T indicated that they represent two separate species. As the three isolates are clearly distinct from all recognized acidophilic members of the Alphaproteobacteria, they are considered to represent two novel species of a new genus, for which the names Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov. are proposed. The type strain of Acidisoma sibiricum is TPB606T (=DSM 21000T=VKM B-2487T) and the type strain of Acidisoma tundrae is WM1T (=DSM 19999T=VKM B-2488T).
International Journal of Systematic and Evolutionary Microbiology | 2015
Svetlana N. Dedysh; Alena Didriksen; Olga V. Danilova; Svetlana E. Belova; Susanne Liebner; Mette M. Svenning
An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T).
Microbiology | 2012
A. V. Fedotova; Svetlana E. Belova; Irina S. Kulichevskaya; Svetlana N. Dedysh
Wetland ecosystems are the natural centers of freshwater formation in northern Russia lowland landscapes. The humic acidic waters formed in bogs feed the numerous lakes of the northern regions. One milliliter of the water in these lakes contains up to 104 ultrasmall microbial cells that pass through “bacterial” filters with a pore size of 0.22 μm. The vast majority of these cells do not grow on nutrient media and cannot be identified by routine cultivation-based approaches. Their identification was performed by analysis of clone libraries obtained by PCR amplification of archaeal and bacterial 16S rRNA genes from the fraction of cells collected from water filtrates of acidic lakes. Most of the obtained bacterial 16S rRNA gene sequences represented the class Betaproteobacteria and exhibited the highest homology of (94–99%) with 16S rRNA genes of representatives of the genera Herbaspirillum, Herminiimonas, Curvibacter, and Burkholderia. The archaeal 16S rRNA gene clone library comprised genes of Euryarchaeota representatives. One-third of these genes exhibited 97–99% homology to the 16S rRNA genes of taxonomically described organisms of the orders Methanobacteriales and Methanosarcinales. The rest of the cloned archaeal 16S rRNA genes were only distantly related (71–74% homology) to those in all earlier characterized archaea.