Syed M. S. Reza
Old Dominion University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Syed M. S. Reza.
IEEE Transactions on Medical Imaging | 2015
Bjoern H. Menze; András Jakab; Stefan Bauer; Jayashree Kalpathy-Cramer; Keyvan Farahani; Justin S. Kirby; Yuliya Burren; Nicole Porz; Johannes Slotboom; Roland Wiest; Levente Lanczi; Elizabeth R. Gerstner; Marc-André Weber; Tal Arbel; Brian B. Avants; Nicholas Ayache; Patricia Buendia; D. Louis Collins; Nicolas Cordier; Jason J. Corso; Antonio Criminisi; Tilak Das; Hervé Delingette; Çağatay Demiralp; Christopher R. Durst; Michel Dojat; Senan Doyle; Joana Festa; Florence Forbes; Ezequiel Geremia
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
IEEE Transactions on Biomedical Engineering | 2013
Atiq Islam; Syed M. S. Reza; Khan M. Iftekharuddin
A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available.
Medical Image Analysis | 2017
Oskar Maier; Bjoern H. Menze; Janina von der Gablentz; Levin Häni; Mattias P. Heinrich; Matthias Liebrand; Stefan Winzeck; Abdul W. Basit; Paul Bentley; Liang Chen; Daan Christiaens; Francis Dutil; Karl Egger; Chaolu Feng; Ben Glocker; Michael Götz; Tom Haeck; Hanna Leena Halme; Mohammad Havaei; Khan M. Iftekharuddin; Pierre-Marc Jodoin; Konstantinos Kamnitsas; Elias Kellner; Antti Korvenoja; Hugo Larochelle; Christian Ledig; Jia-Hong Lee; Frederik Maes; Qaiser Mahmood; Klaus H. Maier-Hein
&NA; Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non‐invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub‐challenges: Sub‐Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state‐of‐the‐art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state‐of‐the‐art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub‐acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles‐challenge.org). HighlightsEvaluation framework for automatic stroke lesion segmentation from MRIPublic multi‐center, multi‐vendor, multi‐protocol databases releasedOngoing fair and automated benchmark with expert created ground truth setsComparison of 14+7 groups who responded to an open challenge in MICCAISegmentation feasible in acute and unsolved in sub‐acute cases Graphical abstract Figure. No caption available.
Proceedings of SPIE | 2014
Syed M. S. Reza; Khan M. Iftekharuddin
In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.
Proceedings of SPIE | 2015
Syed M. S. Reza; Randall Mays; Khan M. Iftekharuddin
We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multifractional Brownian motion (mBm) [2] in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.
Archive | 2016
Syed M. S. Reza; Atiq Islam
This chapter discusses multi-fractal texture estimation and characterization of brain lesions (necrosis, edema, enhanced tumor, non-enhanced tumor, etc.) in magnetic resonance (MR) images. This work formulates the complex texture of tumor in MR images using a stochastic model known as multi-fractional Brownian motion (mBm). Mathematical derivations of the mBm model and corresponding algorithm to extract the spatially varying multi-fractal texture feature are discussed. Extracted multi-fractal texture feature is fused with other effective features to enhance the tissue characteristics. Segmentation of the tissues is performed by using a feature-based classification method. The efficacy of the mBm texture feature in segmenting different abnormal tissues is demonstrated using a large-scale publicly available clinical dataset. Experimental results and performance of the methods confirm the efficacy of the proposed technique in an automatic segmentation of abnormal tissues in multimodal (T1, T2, Flair, and T1contrast) brain MRIs.
Proceedings of SPIE | 2017
Linmin Pei; Syed M. S. Reza; Wei Li; Christos Davatzikos; Khan M. Iftekharuddin
In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.
Proceedings of SPIE | 2016
Syed M. S. Reza; Khan M. Iftekharuddin
This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients’ images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.
bioinformatics and biomedicine | 2015
Linmin Pei; Syed M. S. Reza; Khan M. Iftekharuddin
In this work, we propose a novel method to improve the predication of brain tumor growth by fusing with the state-of-art tumor segmentation. The Glioma Image Segmentation and Registration (GLISTR) is known for joint segmentation and deformable registration of brain scans as well as tumor growth prediction using MRI. This paper, for the first time in literature, aims to improve the tumor growth prediction by integrating the growth patterns of different tissues such as necrosis, edema, and tumor obtained from GLISTR with our stochastic texture-based tumor segmentation methods using a joint label fusion (JLF) technique. We evaluate the proposed method using several adult longitudinal cases from the 2015 BRATS [1] dataset. The experimental results show difference of these tissues growth prediction by applying GLISTR and joint label fusion. ANOVA analysis suggests statistically improvement in the longitudinal tumor core prediction results.
Rundbrief Der Gi-fachgruppe 5.10 Informationssystem-architekturen | 2014
Syed M. S. Reza; Randall Mays; Khan M. Iftekharuddin
This work proposes a novel non-invasive method for brain tumor grading using magnetic resonance imaging (MRI). Multifractal Detrended Fluctuation Analysis (MFDFA) [1] provides features that are useful for classification (grading) of brain tumors such as High Grade (HG) or Low Grade (LG) in MRI.