Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvie Durand is active.

Publication


Featured researches published by Sylvie Durand.


Carbohydrate Polymers | 1999

Physico-chemical characterisation of sago starch

Fasihuddin B. Ahmad; Peter A. Williams; Jean-Louis Doublier; Sylvie Durand; Alain Buléon

The physico-chemical characteristics of various sago starch samples from South East Asia were determined and compared to starches from other sources. X-ray diffraction studies showed that all the sago starches exhibited a C-type diffraction pattern. Scanning electron microscopy showed that they consist of oval granules with an average diameter around 30 μm. Proximate composition studies showed that the moisture content in the sago samples varied between 10.6% and 20.0%, ash between 0.06% and 0.43%, crude fat between 0.10% and 0.13%, fiber between 0.26% and 0.32% and crude protein between 0.19% and 0.25%. The amylose content varied between 24% and 31%. The percentage of amylose obtained by colourimetric determination agreed well with the values obtained by fractionation procedures and potentiometric titration. Intrinsic viscosities and weight average molecular weight were determined in 1M KOH. Intrinsic viscosity for amylose from sago starches varied between 310 and 460 ml/g while for amylopectin the values varied between 210 and 250 ml/g. The molecular weight for amylose was found to be in the range of 1.41×106 to 2.23×106 while for amylopectin it was in the range of 6.70×106 to 9.23×106. The gelatinisation temperature for the sago starches studied varied between 69.4°C and 70.1°C. The exponent ‘a’ in the Mark–Houwink equation and the exponent ‘α’ in the equation Rg=kMα was found to be 0.80 and 0.58, respectively for amylose separated from sago starch and these are indicative of a random coil conformation. Two types of pasting properties were observed. The first was characterised by a maximum consistency immediately followed by sharp decrease in consistency while the second type was characterised by a plateau when the maximum consistency was reached.


Journal of Chromatography A | 2014

Development and validation of a specific and sensitive gas chromatography tandem mass spectrometry method for the determination of bisphenol A residues in a large set of food items.

Yoann Deceuninck; E. Bichon; Sylvie Durand; Nawel Bemrah; Z. Zendong; Marie-Line Morvan; Philippe Marchand; G. Dervilly-Pinel; Jean Philippe Antignac; J.C. Leblanc; B. Le Bizec

BPA-containing products are widely used in foodstuffs packaging as authorized within the European Union (UE no. 10/2011). Therefore, foods and beverages are in contact with BPA which can migrate from food contact material to foodstuffs. An accurate assessment of the exposure of the consumers to BPA is crucial for a non-ambiguous risk characterization. In this context, an efficient analytical method using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), in the selected reaction monitoring (SRM) mode, was developed for the quantification of BPA in foodstuffs at very low levels (<0.5μgkg(-1)). A standard operating procedure, based on the combination of two successive solid phase extractions (SPE), was developed for various liquid and solid foodstuffs. The use of (13)C12-BPA as internal standard allowed accurate quantification of BPA by isotopic dilution. Control charts based on both blank and certified materials have been implemented to ensure analytical data quality. The developed analytical method has been validated according to in-house validation requirements. R(2) was better than 0.9990 within the range [0-100μgkg(-1)], the trueness was 4.2%. Repeatability and within-laboratory reproducibility ranged from 7.5% to 19.0% and 2.5% to 12.2%, respectively, at 0.5 and 5.0μgkg(-1) depending on the matrices tested for. The detection and quantification limits were 0.03 and 0.10μgkg(-1), respectively. The reporting limit was 0.35μgkg(-1), taking into account the mean of the laboratory background contamination. The global uncertainty was 22.2% at 95% confidence interval.


Colloids and Surfaces B: Biointerfaces | 2003

Iota-carrageenan/casein micelles interactions: evidence at different scales

Catherine Garnier; Camille Michon; Sylvie Durand; Gérard Cuvelier; Jean Louis Doublier; Bernard Launay

Abstract The effect of temperature on the behaviour of iota-carrageenan (CI) 0.1 wt.%/casein micelles (CM) 0–5 wt.% mixtures has been studied using three techniques: confocal laser scanning microscopy (CLSM), differential scanning calorimetry (DSC) and spectrophotometry. The microscopy clearly shows that those mixed systems separate in two phases, one being enriched in CM. It has been shown that the CM concentration seems to have an effect on the extent of the phase separation phenomenon. The DSC experiments show that addition of CM modifies the helix to coil transition temperature of carrageenan. The enthalpy of melting of helices decreases as the CM concentration increases, and the peak is shifted towards higher temperature. Local electrostatic interactions between carrageenan chains and CM have been studied by a spectrophotometric method using methylene blue (MB) properties of absorption. The absorption spectra of MB in presence of CI and CM were compared with the one of MB in presence of carrageenan alone at temperatures above and below the carrageenan coil to helix transition. The modifications of the spectrum by addition of CM are discussed in terms of interactions and rigidification of the carrageenan chains.


Carbohydrate Polymers | 2012

Properties of cellulose/pectins composites: implication for structural and mechanical properties of cell wall.

G. Agoda-Tandjawa; Sylvie Durand; Claire Gaillard; Catherine Garnier; Jean-Louis Doublier

The primary cell wall of dicotyledonous plants can be considered as a concentrated polymer assembly, containing in particular polysaccharides among which cellulose and pectins are known to be the major components. In order to understand and control the textural quality of plant-derived foods, it is highly important to elucidate the rheological and microstructural properties of these components, individually and in mixture, in order to define their implication for structural and mechanical properties of primary plant cell wall. In this study, the rheological and microstructural properties of model systems composed of sugar-beet microfibrillated cellulose and HM pectins from various sources, with varied degrees of methylation and containing different amounts of neutral sugar side chains, were investigated. The influence of the presence of calcium and/or sodium ions and the biopolymer concentrations on the properties of the mixed systems were also studied. The characterizations of the mixed system, considered as a simplified model of primary plant cell wall, showed that whatever the structural characteristics of the pectins, the ionic conditions of the medium and the biopolymer concentrations, the gelation of the composite was mainly controlled by cellulose. Thus, the cellulose network would be the principal component governing the mechanical properties of the cell walls. However, the neutral sugar side chains of the pectins seem to play a part in the interactions with cellulose, as shown by the interesting viscoelastic properties of cellulose/apple HM pectins systems. The rigidity of cellulose/pectins composite was strongly influenced by the structural characteristics of pectins. The particular properties of primary plant cell walls would thus result from the solid viscoelastic properties of cellulose, its interactions with pectins according to their structural characteristics (implication of the neutral sugar side chains and the specific potential calcic interactions) and of the distribution of the components in separate phases.


Frontiers in Plant Science | 2016

Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation

Anne-Laure Chateigner-Boutin; José Juan Ordaz-Ortiz; Camille Alvarado; Brigitte Bouchet; Sylvie Durand; Yves Verhertbruggen; Yves Barrière; Luc Saulnier

Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding.


Applied Spectroscopy | 2014

Investigating Lignin Key Features in Maize Lignocelluloses Using Infrared Spectroscopy

Richard Chazal; Paul Robert; Sylvie Durand; Marie Francoise Devaux; Luc Saulnier; Catherine Lapierre; Fabienne Guillon

Lignins and their cross-linking to hemicelluloses detrimentally affect the cellulose-to-ethanol conversion of grass lignocelluloses. Screening appropriate grass cell walls and their compositional changes during the various steps of the process calls for a high-throughput analytical technique. Such a performance can be fulfilled by Fourier transform mid-infrared (FT-MIR) spectroscopy. In the present paper, a set of maize cell walls from mature stems were selected, including brown midrib samples. Lignin fractions were isolated by mild acidolysis to obtain a set of purified maize lignin standards. The lignin content and the percentage of lignin-derived p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) thioacidolysis monomers were determined. In addition, the composition of cell wall polysaccharides, as well as the amount of ester-linked p-coumaric (CA) and ferulic (FA) acids, was measured by wet chemistry. Partial least square (PLS) analyses were applied to infrared and chemical data of cell walls. The resulting models showed a good predictive ability with regard to the lignin content, to the frequency of S (or G) thioacidolysis monomers, and to the level of ester-linked CA of maize cell walls. The loading plots and regression coefficients revealed relevant infrared absorption bands.


PLOS ONE | 2017

Whole proteome analyses on Ruminiclostridium cellulolyticum show a modulation of the cellulolysis machinery in response to cellulosic materials with subtle differences in chemical and structural properties

Nelly Badalato; Alain Guillot; Victor Sabarly; Marc Dubois; Nina Pourette; Bruno Pontoire; Paul Robert; Arnaud Bridier; Véronique Monnet; Diana Machado de Sousa; Sylvie Durand; Laurent Mazéas; Alain Buléon; Théodore Bouchez; Gérard Mortha; Ariane Bize

Lignocellulosic materials from municipal solid waste emerge as attractive resources for anaerobic digestion biorefinery. To increase the knowledge required for establishing efficient bioprocesses, dynamics of batch fermentation by the cellulolytic bacterium Ruminiclostridium cellulolyticum were compared using three cellulosic materials, paper handkerchief, cotton discs and Whatman filter paper. Fermentation of paper handkerchief occurred the fastest and resulted in a specific metabolic profile: it resulted in the lowest acetate-to-lactate and acetate-to-ethanol ratios. By shotgun proteomic analyses of paper handkerchief and Whatman paper incubations, 151 proteins with significantly different levels were detected, including 20 of the 65 cellulosomal components, 8 non-cellulosomal CAZymes and 44 distinct extracytoplasmic proteins. Consistent with the specific metabolic profile observed, many enzymes from the central carbon catabolic pathways had higher levels in paper handkerchief incubations. Among the quantified CAZymes and cellulosomal components, 10 endoglucanases mainly from the GH9 families and 7 other cellulosomal subunits had lower levels in paper handkerchief incubations. An in-depth characterization of the materials used showed that the lower levels of endoglucanases in paper handkerchief incubations could hypothetically result from its lower crystallinity index (50%) and degree of polymerization (970). By contrast, the higher hemicellulose rate in paper handkerchief (13.87%) did not result in the enhanced expression of enzyme with xylanase as primary activity, including enzymes from the “xyl-doc” cluster. It suggests the absence, in this material, of molecular structures that specifically lead to xylanase induction. The integrated approach developed in this work shows that subtle differences among cellulosic materials regarding chemical and structural characteristics have significant effects on expressed bacterial functions, in particular the cellulolysis machinery, resulting in different metabolic patterns and degradation dynamics.


Frontiers in Plant Science | 2018

Synchrotron Time-Lapse Imaging of Lignocellulosic Biomass Hydrolysis: Tracking Enzyme Localization by Protein Autofluorescence and Biochemical Modification of Cell Walls by Microfluidic Infrared Microspectroscopy

Marie-Françoise Devaux; Frédéric Jamme; William André; Brigitte Bouchet; Camille Alvarado; Sylvie Durand; Paul Robert; Luc Saulnier; Estelle Bonnin; Fabienne Guillon

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.


Chemosphere | 2018

Occurence of legacy and novel brominated flame retardants in food and feed in France for the period 2014 to 2016

A. Vénisseau; Emmanuelle Bichon; Aline Brosseaud; Vincent Vaccher; Elodie Lesquin; F. Larvor; Sylvie Durand; Gaud Dervilly-Pinel; Philippe Marchand; B. Le Bizec

Determination of the occurrence levels of legacy and novel BFRs is today required to better understand the trends of BFRs contamination in food consecutive to the EU PBDEs restrictions and to proceed to a recent human food exposure in parallel. Therefore, concentrations of a large set of brominated flame retardants (BFRs) (n = 27) including PBDEs, HBCDDs, TBBPA and novel flame retardants (nBFRs) have been determined in more than 600 food and feed samples collected between 2014 and 2016 in the context of French monitoring plans. Although legacy BFRs had already been studied in France, such a survey constituted the very first determination of nBFRs occurrence in foodstuffs at the national level. The concentration levels measured in fish and fish products were in general higher than in the other food categories. PBDEs were detected in 70% of the samples and were observed as the most abundant congeners (representing 80% of the sum of the monitored BFRs), while α-HBCDD could also be considered as a predominant congener (up to 26% of the sum of the monitored BFRs in fishes). nBFRs concentration levels were most of the time below the LOQ, except PBT, PBBz and HBBz which were more frequently detected at low levels. Also investigated in the study, BRPs exhibited high concentration levels in crustaceous (maximum value > 2700 pg/g ww).


THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual#N#Meeting | 2008

Viscoelasticity, Conformational Transition and Ultrastructure of Kappa‐Carrageenan in the Presence of Potassium Ion around the Critical Total Ion Concentration

M.C. Núñez-Santiago; Alberto Tecante; Sylvie Durand; Catherine Garnier; Jean Louis Doublier

Rheology, microDSC, and confocal laser scanning microscopy were used to study the effect of potassium ion on the viscoelastic behavior, disorder‐order transition and the ultrastructure, respectively, of kappa‐carrageenan in aqueous medium in the vicinity of the critical total ionic concentration (C*). The rheological tests showed a “weak” gel behavior, with G′>G″ and both moduli dependent on frequency. However, during heating, microDSC showed two zones: one attributed to the presence of ordered double helices without aggregation, and another to the fusion of aggregated double helices. Microscopy showed a three‐dimensional network whose continuity depends of the concentration of added potassium ions. For a gel to be formed, a sufficient amount of potassium ion is necessary to promote complete aggregation of double helices so they can form a continuous three‐dimensional network.

Collaboration


Dive into the Sylvie Durand's collaboration.

Top Co-Authors

Avatar

Catherine Garnier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Doublier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Buléon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

B. Le Bizec

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Claire Gaillard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Estelle Bonnin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

G. Agoda-Tandjawa

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-François Thibault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luc Saulnier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Paul Robert

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge