Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Crowe is active.

Publication


Featured researches published by T. Crowe.


Meat Science | 2012

Road transport of cattle, swine and poultry in North America and its impact on animal welfare, carcass and meat quality: A review

K. S. Schwartzkopf-Genswein; L. Faucitano; S. Dadgar; P.J. Shand; L. A. González; T. Crowe

This paper reviews the effects of road transport on the welfare, carcass and meat quality of cattle, swine and poultry in North America (NA). The main effects of loading density, trailer microclimate, transport duration, animal size and condition, management factors including bedding, ventilation, handling, facilities, and vehicle design are summarized by species. The main effects listed above all have impacts on welfare (stress, health, injury, fatigue, dehydration, core body temperature, mortality and morbidity) and carcass and meat quality (shrink, bruising, pH, color defects and water losses) to varying degrees. It is clear that the effect of road transport is a multi-factorial problem where a combination of stressors rather than a single factor is responsible for the animals well-being and meat quality post transport. Animals least fit for transport suffer the greatest losses in terms of welfare and meat quality while market ready animals (in particular cattle and pigs) in good condition appear to have fewer issues. More research is needed to identify the factors or combination of factors with the greatest negative impacts on welfare and meat quality relative to the species, and their size, age and condition under extreme environmental conditions. Future research needs to focus on controlled scientific assessments, under NA conditions, of varying loading densities, trailer design, microclimate, and handling quality during the transport process. Achieving optimal animal well-being, carcass and meat quality will entirely depend on the quality of the animal transport process.


Journal of Animal Science | 2013

Effects of transport duration on maintenance behavior, heart rate and gastrointestinal tract temperature of market-weight pigs in 2 seasons.

S. Goumon; J. A. Brown; L. Faucitano; Tina M. Widowski; T. Crowe; M. L. Connor; H. W. Gonyou

Welfare and meat quality of market-weight pigs may be negatively affected by transport duration and environmental temperatures, which vary considerably between seasons. This study evaluated the effects of 3 transport durations (6, 12, and 18 h) on the physiology and behavior of pigs in summer and winter in western Canada. Market-weight pigs were transported using a pot-belly trailer at an average loading density of 0.375 m(2)/100 kg. Four replicates of each transport duration were conducted during each season. Heart rate and gastrointestinal tract temperature (GTT) were monitored from loading to unloading in 16 pigs from 4 selected trailer compartments (n = 96 groups, total of 384 animals, BW = 120.8 ± 0.4 kg), namely top front (C1), top back (C4), middle front (C5), and bottom rear (C10). Behavior was recorded for pigs (948 and 924 animals, in summer and winter, respectively) in C1, C4, and C5 during transportation (standing, sitting, lying), and during 90 min in lairage (sitting, lying, drinking, latency to rest) for pigs in all 4 compartments. Transport was split into 7 periods: loading, pre-travel (PT), initial travel (IT), pre-arrival 1 (PA1) and 2 (PA2), unloading, and lairage. During IT and PA2, pigs spent less time lying in winter than summer (P < 0.05 and P < 0.05, respectively). During PA1, PA2, and unloading, a greater (P < 0.001) heart rate was found in pigs transported in winter compared with summer. During PA2, pigs subjected to the 18-h transport treatment in winter had a greater (P < 0.05) GTT than the other groups. In lairage, pigs transported for 18 h in winter drank more (P < 0.001) and took longer to rest (P < 0.01) than pigs from other groups. During PA1, pigs transported for 18 h had the greatest GTT (P < 0.001). At unloading, pigs transported for 6 h had the lowest GTT (P < 0.001). In lairage, pigs transported for 18 h spent less time lying than those transported for 6 or 12 h (P < 0.001). These results suggest that in winter, pigs increased their metabolism and were reluctant to rest on cold floors. Pigs transported for 18 h in winter showed greater evidence of thirst. It may be concluded that under western Canadian climatic conditions, long transports (18 h) in cold weather appear to be more detrimental to pig welfare.


Journal of Animal Science | 2013

Transportation of market-weight pigs: II. Effect of season and location within truck on behavior with an eight-hour transport1

Stephanie Torrey; L. Faucitano; Tina M. Widowski; N. Lewis; T. Crowe; J. A. Correa; J. A. Brown; S. Hayne; H. W. Gonyou

Transportation of pigs to slaughter has the potential to negatively impact animal welfare, particularly in hot temperatures and over long transport durations. The objective of this experiment was to determine if season and location within vehicle influenced the behavior of market-weight pigs during loading, transit, unloading, and lairage after a long-distance trip to slaughter. On a pot-belly truck, 1,170 pigs were transported (n = 195 pigs/wk in 7 experimental compartments) for 8 h to a commercial abattoir in summer (6 wk) and winter (5 wk). Pig behavior was observed at loading, in transit, at unloading, and in lairage. Handler intervention at loading was observed, and the time to load and unload was recorded. Although season did not (P = 0.91) affect loading time, more prods (P = 0.014) were necessary to load pigs in summer than winter. Loading in winter also tended to be longer (P = 0.071) into compartments involving internal ramps. In transit, more pigs (P = 0.025) were standing in winter compared with summer. Unloading took longer (P < 0.006) in winter than in summer and from compartments where pigs had to negotiate ramps and 180° turns. Furthermore, pigs in summer experienced more slipping (P = 0.032), falling (P = 0.004), overlapping (P < 0.001), and walking backward (P < 0.001) than pigs in winter. Pigs unloading from compartments with internal ramps slipped more (P < 0.0001) than other pigs. Season influenced latency to rest in lairage, with those transported in summer resting sooner (P < 0.0001) than those in winter. In conclusion, season and location within trucks differentially affect pig behavior before, during, and after long-distance transportation. Differences in lighting and temperature between seasons and the inclusion of internal ramps within vehicles may play important roles in the welfare of pigs transported to slaughter.


Journal of Animal Science | 2013

Transportation of market-weight pigs: I. Effect of season, truck type, and location within truck on behavior with a two-hour transport

Stephanie Torrey; Tina M. Widowski; N. Lewis; T. Crowe; J. A. Correa; J. A. Brown; H. W. Gonyou; L. Faucitano

There is evidence that season and truck/trailer design play important roles in pig welfare during transportation although little is known about their interaction and effect on pig behavior. This experiment was designed to examine the influence of season and truck/trailer design on the behavior during loading, transit, unloading, and lairage of market-weight pigs transported to slaughter. A total of 3,756 pigs were transported on either a 3-deck pot-belly trailer (PB; n = 181 pigs/wk in 8 experimental compartments) or a double-decker hydraulic truck (DD; n = 85 pigs/wk in 4 compartments) for 2 h to a commercial abattoir in summer and winter (6 wk in each season). Density on both vehicles was 0.40 m(2)/pig. Accounting for the number of pigs, loading took longer (P = 0.033) onto the DD than the PB, but season did not (P = 0.571) influence loading time. Pigs loaded onto the PB moved backward more (P = 0.003) frequently than those loaded onto the DD. The frequency of tapping by handler was the lone handling intervention affected by truck type, with more (P = 0.014) tapping needed to move pigs on and off DD than PB. During loading, pigs made more (P < 0.001) slips and falls, overlaps, 180° turns, underlaps, and vocalizations in winter compared with summer. On truck, more (P < 0.001) pigs were standing on the DD at the farm and in transit than on the PB whereas more (P = 0.012) pigs were lying in transit in summer than in winter. Pigs took longer to unload (P < 0.001) from the PB than the DD, but no difference between vehicles (P = 0.473) in latency to rest in lairage was found. Pigs slipped and fell more (P < 0.001) during unloading, took longer (P < 0.001) to unload, and had a shorter (P = 0.006) latency to rest in lairage in winter than summer. Vehicle design, in particular the presence of ramps, influenced pig behavior before, during, and after transportation, regardless of the season. Season affected loading and unloading behavior, especially in terms of slips and falls on the ramp, and differences in truck/trailer designs were also partly to blame for unloading times and lairage behavior. Ramps and changes in direction during unloading appear to slow down the handling process.


Journal of Animal Science | 2013

Effect of ramp configuration on easiness of handling, heart rate, and behavior of near-market weight pigs at unloading

S. Goumon; L. Faucitano; T. Crowe; M. L. Connor; H. W. Gonyou

Three experiments, each using 280 pigs, were conducted in a simulated compartment to test the effect of angle of entrance (AOE) to the ramp (90°, 60°, 30°, or 0°), ramp slope (0°, 16°, 21°, or 26°), and an initial 20-cm step associated with 16° or 21° ramp slopes on the ease of handling, heart rate (HR), and behavior of near market-weight pigs during unloading. Heart rate (pigs and handler), unloading time, interventions of the handler, and reactions of the pigs were monitored. The results of the first experiment show that using a 90° AOE had detrimental effects on ease of handling (P < 0.05), HR of the pig (P < 0.05), and behavior (P < 0.05). The 0° and 30° AOE appeared to improve the ease of unloading, whereas the 60° AOE had an intermediate effect. The 30° AOE appeared to be preferable, because pigs moved at this angle balked less frequently (P < 0.01) and required less manipulation (P < 0.05) than pigs moved with a 0° AOE. The results of the second experiment show that the use of a flat ramp led to the easiest unloading, as demonstrated by the lower number of balks (P < 0.001) when pigs were moved to the ramp and less frequent use of paddle (P = 0.001) or voice (P < 0.001) on the ramp, compared with the other treatments. However, the flat ramp did not differ from the 21° ramp in many of the variables reflecting ease of handling, which may be explained by the difference in configuration between the ramps. The results also show that the use of the steepest ramp slope had the most detrimental effect on balking and backing up behavior of pigs (P < 0.001), and handling (touches, slaps, and pushes; P < 0.05 for all) when moved to the ramp and on unloading time (P < 0.01). No differences in pig HR (P < 0.05) and ease of handling on the ramp (P < 0.05) were found between a 26° and 16° ramp slope, suggesting that the length of the ramp may be one of the factors that make unloading more difficult. The results of the last experiment show that an initial step made unloading physically more demanding for the handler (P < 0.001) and pigs on the ramp (P < 0.05) as demonstrated by their greater HR. The greater difficulty of handling (P < 0.01) and reluctance to move (P < 0.05) of pigs moved toward the 16° ramp with a step suggest that pigs perceived this ramp as more psychologically challenging. Making a few changes in terms of the design of the ramp could improve the efficiency of handling and reduce stress in pigs.


Journal of Animal Science | 2015

Effects of season, truck type, and location within truck on gastrointestinal tract temperature of market-weight pigs during transport

S. Conte; L. Faucitano; Stephanie Torrey; H. W. Gonyou; T. Crowe; E. Toth Tamminga; Tina M. Widowski

Two experiments were done to assess the effects of season, truck type, and location in the truck on the gastrointestinal tract temperature (GTT) of market-weight pigs during transport. In Exp. 1, a total of 504 sentinel pigs were selected from a total load of 3,756 pigs over 12 wk in summer or winter and transported in either a double-decked (DD) hydraulic truck or a pot-belly (PB) trailer for 2 h. In Exp. 2, a total of 330 sentinel pigs were selected from a total load of 2,145 pigs over 11 wk in summer or winter and transported in a PB trailer for 8 h. In both experiments, sentinel pigs were equipped with a temperature data logger for the real-time GTT recording from the farm to slaughter. Transport was divided into 8 periods in Exp. 1 (rest, pretravel, initial travel, prearrival 1, prearrival 2, unloading, lairage 1, and lairage 2) and in Exp. 2 (rest, pretravel 1, pretravel 2, travel, prearrival 1, prearrival 2, lairage 1, and lairage 2). A delta GTT (ΔGTT) was calculated as the difference between the measured GTT at any determined event and the GTT measured at rest. In Exp. 1, the ΔGTT of pigs was greater ( < 0.001) in summer than in winter and only during the pretravel and initial travel periods. No difference was observed in the ΔGTT between the 2 truck types ( > 0.10). In summer, pigs located in the front top and rear top compartments of the PB trailer presented greater ( < 0.05) ΔGTT values than those transported in the middle top and front belly compartments during initial travel. In summer, during prearrival 1 and 2, a greater ( < 0.05) loss of GTT was found in pigs located in the rear top compartment of the DD truck compared with the rear lower compartment and in the front middle compartment compared with the rear middle compartment of the PB trailer. In Exp. 2, the ΔGTT of pigs was greater ( = 0.03) in summer than in winter during pretravel 2. Pigs in the front top compartment had a greater ( < 0.05) ΔGTT compared with pigs in the middle top, lower deck, and front belly compartments during the pretravel periods. Based on the results of the 2 experiments, modifications of the PB trailer model are recommended to limit body temperature increase due to physical stress at loading and unloading, and during transport due to inconsistent ventilation rate across vehicle locations.


Journal of Animal Science | 2015

Trailer temperature and humidity during winter transport of cattle in Canada and evaluation of indicators used to assess the welfare of cull beef cows before and after transport.

C. Goldhawk; E. D. Janzen; L. A. González; T. Crowe; J.P. Kastelic; C. Kehler; M. Siemens; K. H. Ominski; Edmond A. Pajor; K. S. Schwartzkopf-Genswein

The current study evaluated 17 loads of cull beef cows transported in Canadian winter conditions to assess in-transit temperature and humidity, evaluation of events during loading and unloading, and animal condition and bruising. Regardless of the use of boards to block ventilation holes in trailers, temperatures were higher within trailers than at ambient locations during both travel and stationary periods (P < 0.01). Boarding was associated with smaller differences in trailer temperature, compared with ambient conditions, while the trailer was traveling at highway speeds versus when trailers were stationary (P < 0.01). Moisture levels within trailers were not different from ambient conditions when loads using boarding were traveling (P < 0.01), whereas loads without boarding had a larger difference (P < 0.01). The moisture within trailers relative to ambient conditions increased when trailers were stationary compared with traveling when boarding was used (P < 0.01). The majority of cattle transported were in good body condition (97.4% within BCS of 2 to 3.5) and had calm temperaments (96.7%). Although all comparisons were made, only the doghouse compartment had an increased risk of severe bruising compared with all other compartments (odds ratio [95% confidence interval]: 3.0 [1.6–5.5], 3.7 [2.1–6.4], 2.2 [1.3–3.7] and 3.8 [1.5–9.6] in comparison with the back, belly, deck, and nose compartments, respectively; P < 0.05). Increasing the duration of waiting to unload 30 min relative to a 1 h duration increased the odds of severe bruising by 1.18 times (95% confidence interval: 1.09–1.29; P < 0.01). Scoring systems that have been developed for auditing unloading of cattle had limited variation across loads at both loading and unloading. Pretransport assessment of animal condition using the American Meat Institute’s compromised animal score was the only scoring system that was consistent with posttransport scores. We inferred from the temperature and humidity data in the current study that under commercial conditions, boarding may increase ventilation within trailers during travel and decrease ventilation during stationary periods. The current study provides the first indication that issues in Canadian cull cow transport may be related to pretransport animal condition and management of unloading.


Journal of Animal Science | 2014

Trailer microclimate during commercial transportation of feeder cattle and relationship to indicators of cattle welfare

C. Goldhawk; T. Crowe; E. D. Janzen; L. A. González; J. Kastelic; Ed Pajor; K. S. Schwartzkopf-Genswein

Nineteen loads of commercial feeder cattle (BW 376 ± 39 kg, mean ± SD) transported for 18 ± 4.5 h in summer and winter seasons were used to collect data on internal temperature and humidity conditions in the deck and belly compartment of pot-bellied trailers and their relationship with shrink, cortisol, and morbidity. Measurements of temperature or humidity at ceiling or animal level did not vary with transportation factors. Temperature and humidity ratio was greater at animal-level than ambient conditions during nonhighway travel and stationary periods (P < 0.01). During the 3 time periods evaluated within journeys, there was a larger difference between animal-level and ambient conditions during the winter than during the summer (P < 0.01); however, this difference was not associated with other transport factors (P > 0.05). Evening loads (1700 and 2100 h) experienced more shrink in the summer than in the winter (11.2 ± 0.5 vs. 9.0 ± 0.5% of BW; P = 0.03). A 1°C increase in difference between average animal-level temperature in transit and the mean ambient temperature during the 10 d before transport was associated with a 0.11 ± 0.03% of BW increase in shrink (P < 0.01) and 0.006 ± 0.002 ng/mL increase in posttransport cortisol concentration (P = 0.05). Animal-level temperature-humidity index (THI) events (consecutive observations of THI greater than 78°F) were more likely to last for longer than 1 h when the trailer was stationary vs. traveling (mean = 1.8, confidence level 95% = 1.33, 2.52). During THI events at animal level, the disagreement with ambient temperature regarding THI classification was lower when the vehicle was traveling vs. stationary (95.5 ± 0.01% vs. 99.7 ± 0.002% of THI event in disagreement; P < 0.01) and was greatest in events less than 1 h (99.8 ± 0.0% vs. 91.7 ± 0.03% of THI event in disagreement; P < 0.01). The average magnitude of the difference during these events was 11.4 ± 7.6°F and was not affected by transportation factors (P > 0.05). Despite association between indicators of calf welfare and microclimate, all cattle arrived in good condition and there was 0.96% treatment rate within the first 30 d after arrival. Management and auditing decisions related to transportation of feeder cattle should consider the relationship between animal-level and ambient conditions and conditions before transportation. Under the commercial conditions of the current study, the transportation process did not appear to cause distress according to the dimensions of animal welfare that were assessed.


Journal of Animal Science | 2014

Comparison of eight logger layouts for monitoring animal-level temperature and humidity during commercial feeder cattle transport12

C. Goldhawk; T. Crowe; L. A. González; E. D. Janzen; J.P. Kastelic; Edmond A. Pajor; K. S. Schwartzkopf-Genswein

Measuring animal-level conditions during transit provides information regarding the true risk of environmental challenges to cattle welfare during transportation. However, due to constraints on placing loggers at the animal level, there is a need to identify appropriate proxy locations. The objective was to evaluate 8 distributions of ceiling-level loggers in the deck and belly compartments of pot-belly trailers for assessing animal-level temperature and humidity during 5 to 18 h commercial transportation of feeder cattle. Ambient conditions during transportation ranged from 3.6 to 45.2°C (20.3 ± 7.61°C, mean ± SD). When considering the entire journey, average differences between ceiling and animal-level temperatures were similar among logger layouts (P > 0.05). The uncertainty in the difference in temperature and humidity between locations was high relative to the magnitude of the difference between animal- and ceiling-level conditions. Single-logger layouts required larger adjustments to predict animal-level conditions within either compartment, during either the entire journey or when the trailer was stationary (P < 0.05). Within certain logger layouts, there were small but significant differences in the ability of regression equations to predict animal-level conditions that were associated with cattle weight and available space relative to body size. Furthermore, evaluation of logger layouts based solely on the entire journey without consideration of stationary periods did not adequately capture variability in layout performance. In conclusion, to adequately monitor animal-level temperature and humidity, 10 loggers distributed throughout the compartment was recommended over single-logger layouts within both the deck and belly compartments of pot-belly trailers transporting feeder cattle in warm weather.


Journal of Animal Science | 1998

Comparison of image analysis, exertion force, and behavior measurements for use in the assessment of beef cattle responses to hot-iron and freeze branding.

K. S. Schwartzkopf-Genswein; J. M. Stookey; T. Crowe; B. M. A. Genswein

Collaboration


Dive into the T. Crowe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Faucitano

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Goldhawk

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. W. Gonyou

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.P. Kastelic

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. M. A. Genswein

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge