Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Eich is active.

Publication


Featured researches published by T. Eich.


Nuclear Fusion | 2007

Chapter 4: Power and particle control

A. Loarte; B. Lipschultz; A. Kukushkin; G. F. Matthews; P.C. Stangeby; N. Asakura; G. Counsell; G. Federici; A. Kallenbach; K. Krieger; A. Mahdavi; V. Philipps; D. Reiter; J. Roth; J. D. Strachan; D.G. Whyte; R.P. Doerner; T. Eich; W. Fundamenski; A. Herrmann; M.E. Fenstermacher; Ph. Ghendrih; M. Groth; A. Kirschner; S. Konoshima; B. LaBombard; P. T. Lang; A.W. Leonard; P. Monier-Garbet; R. Neu

Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.


Nuclear Fusion | 2013

Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER

T. Eich; A.W. Leonard; R.A. Pitts; W. Fundamenski; R.J. Goldston; T.K. Gray; A. Herrmann; A. Kirk; A. Kallenbach; O. Kardaun; A.S. Kukushkin; B. LaBombard; R. Maingi; M. A. Makowski; A. Scarabosio; B. Sieglin; J. Terry; A. Thornton; Jet-Efda Contributors

A multi-machine database for the H-mode scrape-off layer power fall-off length, λq in JET, DIII-D, ASDEX Upgrade, C-Mod, NSTX and MAST has been assembled under the auspices of the International Tokamak Physics Activity. Regression inside the database finds that the most important scaling parameter is the poloidal magnetic field (or equivalently the plasma current), with λq decreasing linearly with increasing Bpol. For the conventional aspect ratio tokamaks, the regression finds , yielding λq,ITER 1 mm for the baseline inductive H-mode burning plasma scenario at Ip = 15 MA. The experimental divertor target heat flux profile data, from which λq is derived, also yield a divertor power spreading factor (S) which, together with λq, allows an integral power decay length on the target to be estimated. There are no differences in the λq scaling obtained from all-metal or carbon dominated machines and the inclusion of spherical tokamaks has no significant influence on the regression parameters. Comparison of the measured λq with the values expected from a recently published heuristic drift based model shows satisfactory agreement for all tokamaks.


Nuclear Fusion | 2009

Overview of the results on divertor heat loads in RMP controlled H-mode plasmas on DIII-D

M. Jakubowski; T.E. Evans; M. E. Fenstermacher; M. Groth; C. J. Lasnier; A. W. Leonard; O. Schmitz; J. G. Watkins; T. Eich; W. Fundamenski; R.A. Moyer; R. C. Wolf; L.B. Baylor; J.A. Boedo; Keith H. Burrell; H. Frerichs; J. S. deGrassie; P. Gohil; I. Joseph; S. Mordijck; M. Lehnen; C.C. Petty; R.I. Pinsker; D. Reiter; T.L. Rhodes; U. Samm; M. J. Schaffer; P.B. Snyder; H. Stoschus; T.H. Osborne

In this paper the manipulation of power deposition on divertor targets at DIII-D by the application of resonant magnetic perturbations (RMPs) for suppression of large type-I edge localized modes (ELMs) is analysed. We discuss the modification of the ELM characteristics by the RMP applied. It is shown that the width of the deposition pattern in ELMy H-mode depends linearly on the ELM deposited energy, whereas in the RMP phase of the discharge those patterns are controlled by the externally induced magnetic perturbation. It was also found that the manipulation of heat transport due to the application of small, edge RMP depends on the plasma pedestal electron collisionality . We compare in this analysis RMP and no RMP phases with and without complete ELM suppression. At high 0.5 SRC=http://ej.iop.org/images/0029-5515/49/9/095013/nf307994in002.gif/>, the heat flux during the ELM suppressed phase is of the same order as the inter-ELM and the no-RMP phase. However, below this collisionality value, a slight increase in the total power flux to the divertor is observed during the RMP phase. This is most likely caused by a more negative potential at the divertor surface due to hot electrons reaching the divertor surface from the pedestal area along perturbed, open field lines.


Plasma Physics and Controlled Fusion | 2013

Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO

A. Kallenbach; M. Bernert; R. Dux; L. Casali; T. Eich; L. Giannone; A. Herrmann; R. M. McDermott; A. Mlynek; H. W. Müller; F. Reimold; J. Schweinzer; M. Sertoli; G. Tardini; W. Treutterer; E. Viezzer; R. Wenninger; M. Wischmeier

A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L–H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.


Nuclear Fusion | 2011

Disruption mitigation by massive gas injection in JET

M. Lehnen; A. Alonso; G. Arnoux; N. Baumgarten; S. Bozhenkov; S. Brezinsek; M. Brix; T. Eich; S. Gerasimov; A. Huber; S. Jachmich; U. Kruezi; P. D. Morgan; V. V. Plyusnin; C. Reux; V. Riccardo; G. Sergienko; M. Stamp; Jet-Efda Contributors

Disruption mitigation is mandatory for ITER in order to reduce forces, to mitigate heat loads during the thermal quench and to avoid runaway electrons (REs). A fast disruption mitigation valve has been installed at JET to study mitigation by massive gas injection. Different gas species and amounts have been investigated with respect to timescales and mitigation efficiency. We discuss the mitigation of halo currents as well as sideways forces during vertical displacement events, the mitigation of heat loads by increased energy dissipation through radiation, the heat loads which could arise by asymmetric radiation and the suppression of REs.


Physica Scripta | 2007

Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation

A. Loarte; G. Saibene; R. Sartori; V. Riccardo; P. Andrew; J. Paley; W. Fundamenski; T. Eich; A. Herrmann; G. Pautasso; A. Kirk; G. Counsell; G. Federici; G. Strohmayer; D. Whyte; A. Leonard; R.A. Pitts; I. Landman; B. Bazylev; S. Pestchanyi

New experimental results on transient loads during ELMs and disruptions in present divertor tokamaks are described and used to carry out a extrapolation to ITER reference conditions and to draw consequences for its operation. In particular, the achievement of low energy/convective type I edge localized modes (ELMs) in ITER-like plasma conditions seems the only way to obtain transient loads which may be compatible with an acceptable erosion lifetime of plasma facing components (PFCs) in ITER. Power loads during disruptions, on the contrary, seem to lead in most cases to an acceptable divertor lifetime because of the relatively small plasma thermal energy remaining at the thermal quench and the large broadening of the power flux footprint during this phase. These conclusions are reinforced by calculations of the expected erosion lifetime, under these load conditions, which take into account a realistic temporal dependence of the power fluxes on PFCs during ELMs and disruptions.


Plasma Physics and Controlled Fusion | 2005

Type-I ELM substructure on the divertor target plates in ASDEX Upgrade

T. Eich; A. Herrmann; J. Neuhauser; R. Dux; J. C. Fuchs; S. Günter; L. D. Horton; A. Kallenbach; P. T. Lang; C. F. Maggi; M. Maraschek; V. Rohde; Wolfgang Schneider

In the ASDEX Upgrade tokamak, the power deposition structures on the divertor target plates during type-I edge localized modes (ELMs) have been investigated by infrared thermography. In addition to the axisymmetric strike line, several poloidally displaced stripes are resolved, identifying an ELM as a composite of several subevents. This pattern is interpreted as being a signature of the helical perturbations in the low field side edge during the non-linear ELM evolution. Based on this observation, the ELM related magnetic perturbation in the midplane can be derived from the target load pattern. In the start phase of an ELM collapse, average toroidal mode numbers around n ≈ 3–5 are found evolving to values of n ≈ 12–14 during the ELM power deposition maximum. Further information about the non-linear evolution of the ELM mode structure is obtained from statistical analyses of the spatial distribution, heat flux amplitudes and number of single stripes.


Nuclear Fusion | 2009

Non-boronized compared with boronized operation of ASDEX Upgrade with full-tungsten plasma facing components

A. Kallenbach; R. Dux; M. Mayer; R. Neu; T. Pütterich; V. Bobkov; J. C. Fuchs; T. Eich; L. Giannone; O. Gruber; A. Herrmann; L. D. Horton; C. F. Maggi; H. Meister; H. W. Müller; V. Rohde; A. C. C. Sips; A. Stäbler; J. Stober

After completion of the tungsten coating of all plasma facing components, ASDEX Upgrade has been operated without boronization for 1 1/2 experimental campaigns. This has allowed the study of fuel retention under conditions of relatively low D co-deposition with low-Z impurities as well as the operational space of a full-tungsten device for the unfavourable condition of a relatively high intrinsic impurity level. Restrictions in operation were caused by the central accumulation of tungsten in combination with density peaking, resulting in H?L backtransitions induced by too low separatrix power flux. Most important control parameters have been found to be the central heating power, as delivered predominantly by ECRH, and the ELM frequency, most easily controlled by gas puffing. Generally, ELMs exhibit a positive impact, with the effect of impurity flushing out of the pedestal region overbalancing the ELM-induced W source. The restrictions of plasma operation in the unboronized W machine occurred predominantly under low or medium power conditions. Under medium-high power conditions, stable operation with virtually no difference between boronized and unboronized discharges was achieved. Due to the reduced intrinsic radiation with boronization and the limited power handling capability of VPS coated divertor tiles (?10?MW?m?2), boronized operation at high heating powers was possible only with radiative cooling. To enable this, a previously developed feedback system using (thermo-)electric current measurements as approximate sensor for the divertor power flux was introduced into the standard AUG operation. To avoid the problems with reduced ELM frequency due to core plasma radiation, nitrogen was selected as radiating species since its radiative characteristic peaks at lower electron temperatures in comparison with Ne and Ar, favouring SOL and divertor radiative losses. Nitrogen seeding resulted not only in the desired divertor power load reduction but also in improved energy confinement, as well as in smaller ELMs.


Journal of Nuclear Materials | 2003

ELM energy and particle losses and their extrapolation to burning plasma experiments

A. Loarte; G. Saibene; R. Sartori; M. Becoulet; L. D. Horton; T. Eich; A. Herrmann; M. Laux; G. F. Matthews; S. Jachmich; N. Asakura; A. V. Chankin; A.W. Leonard; G.D. Porter; G. Federici; M. Shimada; M. Sugihara; G. Janeschitz

Abstract Analysis of Type I ELMs from present experiments shows that ELM energy losses decrease with increasing pedestal plasma collisionality ( ν ∗ ped ) and/or increasing τ Front ∥ , where ( τ ∥ Front =2π Rq 95 / c s ,ped ) is the typical ion transport time from the pedestal to the divertor target. ν ∗ ped and τ Front ∥ are not the only parameters that affect the ELMs, also the edge magnetic shear influences the plasma volume affected by the ELMs. ELM particle losses are influenced by this ELM affected volume and are weakly dependent on other pedestal plasma parameters. ‘Minimum’ Type I ELMs, with energy losses acceptable for ITER, where there is no change in the plasma temperature profile during the ELM, are observed for some conditions in JET and DIII-D. The duration of the divertor ELM power pulse is well correlated with τ Front ∥ and not with the duration of the ELM-associated MHD activity. Similarly, the time scale of ELM particle fluxes is also determined by τ Front ∥ . The extrapolation of present experimental results to ITER is summarised.


Nuclear Fusion | 2009

Compatibility of ITER Scenarios with full Tungsten Wall in ASDEX Upgrade

O. Gruber; A. C. C. Sips; R. Dux; T. Eich; J. C. Fuchs; A. Herrmann; A. Kallenbach; C. F. Maggi; R. Neu; T. Pütterich; J. Schweinzer; J. Stober

The transition of ASDEX Upgrade (AUG) from a graphite device to a full tungsten device is demonstrated with a reduction by an order of magnitude in both the carbon deposition and deuterium retention. The tungsten source is dominated by sputtering from intrinsic light impurities, and the tungsten influxes from the outboard limiters are the main source for the plasma. In H-mode discharges, central heating (neutral beams, ECRH) is used to increase turbulent outward transport avoiding tungsten accumulation. ICRH can only be used after boronization as its application otherwise results in large W influxes due to light impurities accelerated by electrical fields at the ICRH antennas. ELMs are important in reducing the inward transport of tungsten in the H-mode edge barrier and are controlled by gas puffing. Even without boronization, stationary, ITER baseline H-modes (confinement enhancement factor from ITER 98(y, 2) scaling H98 ~ 1, normalized beta ?N ~ 2), with W concentrations below 3 ? 10?5 were routinely achieved up to 1.2?MA plasma current.The compatibility of high performance improved H-modes with unboronized W wall was demonstrated, achieving H98 = 1.1 and ?N up to 2.6 at modest triangularities ? ? 0.3 as required for advanced scenarios in ITER. With boronization the light impurities and the radiated power fraction especially in the divertor were reduced and the divertor plasma was actively cooled by N2 seeding. N2 seeding does not only protect the divertor tiles but also considerably improves the performance of improved H-mode discharges. The energy confinement increased to H98-factors of 1.25 (?N ~ 2.7) and thereby exceeded the best values in a carbon-dominated AUG machine under similar conditions. Recent investigations show that this improvement is due to higher temperatures rather than to peaking of the electron density profile.Further ITER discharge scenario tests include the demonstration of ECRF assisted low voltage plasma start-up and current rise to q95 = 3 at toroidal electric fields below 0.3?V?m?1, to achieve a ITER compatible range of plasma internal inductance of 0.71?0.97. The results reported here strongly support tungsten as a first wall material solution.

Collaboration


Dive into the T. Eich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jet-Efda Contributors

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Jachmich

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Huber

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge