T. J. Nash
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by T. J. Nash.
Physics of Plasmas | 1998
Rick B. Spielman; C. Deeney; Gordon Andrew Chandler; M.R. Douglas; D. L. Fehl; M. K. Matzen; D. H. McDaniel; T. J. Nash; John L. Porter; T. W. L. Sanford; J. F. Seamen; W. A. Stygar; K.W. Struve; Stephen P. Breeze; J. McGurn; J. Torres; D. M. Zagar; T. Gilliland; D. Jobe; J. L. McKenney; R. C. Mock; M. Vargas; T. Wagoner; D.L. Peterson
Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations.
Physics of Plasmas | 2005
M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...
Physical Review Letters | 2004
J. E. Bailey; Gordon Andrew Chandler; Stephen A. Slutz; Igor E. Golovkin; P. Lake; J. J. MacFarlane; R. C. Mancini; T.J. Burris-Mog; G. W. Cooper; R. J. Leeper; Thomas Alan Mehlhorn; T. C. Moore; T. J. Nash; Nielsen Ds; C. L. Ruiz; D. G. Schroen; W. Varnum
Hot dense capsule implosions driven by Z-pinch x rays have been measured using a approximately 220 eV dynamic Hohlraum to implode 1.7-2.1 mm diameter gas-filled CH capsules. The capsules absorbed up to approximately 20 kJ of x rays. Argon tracer atom spectra were used to measure the T(e) approximately 1 keV electron temperature and the n(e) approximately 1-4 x 10(23) cm(-3) electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak emission values of T(e), n(e), and symmetry, indicating reasonable understanding of the Hohlraum and implosion physics.
Physics of Plasmas | 1999
T. J. Nash; Mark S. Derzon; Gordon Andrew Chandler; R. J. Leeper; D. L. Fehl; Joel Staton Lash; C. L. Ruiz; G. W. Cooper; J. F. Seaman; J. McGurn; S. Lazier; J. Torres; D. Jobe; T. Gilliland; M. J. Hurst; R. C. Mock; P. Ryan; Dan S. Nielsen; J. C. Armijo; J. L. McKenney; R. Hawn; D. E. Hebron; J. J. MacFarlane; D. Petersen; R.L. Bowers; W. Matuska; D. D. Ryutov
In the concept of the dynamic hohlraum an imploding Z pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision, the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal, the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 MA, 100 ns) to create...
Physics of Plasmas | 2003
Stephen A. Slutz; J. E. Bailey; Gordon Andrew Chandler; Guy R. Bennett; G. W. Cooper; Joel Staton Lash; S. Lazier; P. Lake; R.W. Lemke; Thomas Alan Mehlhorn; T. J. Nash; D. S. Nielson; J. McGurn; T. C. Moore; C. L. Ruiz; Diana Grace Schroen; J. Torres; W. Varnum; Roger Alan Vesey
A dynamic hohlraum is formed when an imploding annular cylindrical Z-pinch driven plasma collides with an internal low density convertor. This collision generates an inward traveling shock wave that emits x rays, which are trapped by the optically thick Z-pinch plasma and can be used to drive an inertial fusion capsule embedded in the convertor. This scheme has the potential to efficiently drive high yield capsules due to the close coupling between the intense radiation generation and the capsule. In prior dynamic hohlraum experiments [J. E. Bailey et al., Phys. Rev Lett. 89, 095004 (2002)] the convertor shock wave has been imaged with gated x-ray pinhole cameras. The shock emission was observed to be very circular and to be quite narrow in the radial direction. This implies that there is minimal Rayleigh–Taylor imprinting on the shock wave. Thus, the dominant source of radiation asymmetry is not random and in principle could be significantly decreased by proper design. Due to the closed geometry of the d...
Physics of Plasmas | 1996
James H. Hammer; James L. Eddleman; P. T. Springer; Max Tabak; Arthur Toor; K. L. Wong; George B. Zimmerman; Chris Deeney; Russ Humphreys; T. J. Nash; T. W. L. Sanford; Rick B. Spielman; John S. de Groot
Z‐pinch implosions driven by the SATURN device [D. D. Bloomquist et al., Proceedings of the 6th Institute of Electrical and Electronics Engineers (IEEE) Pulsed Power Conference, Arlington, VA, edited by P. J. Turchi and B. H. Bernstein (IEEE, New York, 1987), p. 310] at Sandia National Laboratory are modeled with a two‐dimensional radiation magnetohydrodynamic (MHD) code, showing strong growth of the magneto‐Rayleigh–Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble‐spike structures that increase the time span of stagnation and the resulting x‐ray pulse width. Radiation is important in the pinch dynamics, keeping the sheath relatively cool during the run‐in and releasing most of the stagnation energy. The calculations give x‐ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with consta...
Physics of Plasmas | 2006
M. E. Cuneo; Daniel Brian Sinars; E.M. Waisman; D.E. Bliss; W. A. Stygar; Roger Alan Vesey; R.W. Lemke; I. C. Smith; Patrick K. Rambo; John L. Porter; Gordon Andrew Chandler; T. J. Nash; M.G. Mazarakis; R. G. Adams; E. P. Yu; K.W. Struve; T.A. Mehlhorn; S. V. Lebedev; J. P. Chittenden; Christopher A. Jennings
Wire-array z pinches show promise as a high-power, efficient, reproducible, and low-cost x-ray source for high-yield indirect-drive inertial confinement fusion. Recently, rapid progress has been made in our understanding of the implosion dynamics of compact (20-mm-diam), high-current (11–19MA), single and nested wire arrays. As at lower currents (1–3MA), a single wire array (and both the outer and inner array of a nested system), show a variety of effects that arise from the initially discrete nature of the wires: a long wire ablation phase for 50%-80% of the current pulse width, an axial modulation of the ablation rate prior to array motion, a larger ablation rate for larger diameter wires, trailing mass, and trailing current. Compact nested wire arrays operate in current-transfer or transparent mode because the inner wires remain discrete during the outer array implosion, even for interwire gaps in the outer and inner arrays as small as 0.21mm. These array physics insights have led to nested arrays that...
Physics of Plasmas | 1999
D.L. Peterson; R.L. Bowers; W. Matuska; K. D. McLenithan; Gordon Andrew Chandler; C. Deeney; Mark S. Derzon; M.R. Douglas; M. K. Matzen; T. J. Nash; Rick B. Spielman; K.W. Struve; W. A. Stygar; N. F. Roderick
A two-dimensional (2D) Eulerian radiation-magnetohydrodynamic code has been used to successfully simulate hollow metallic z-pinch experiments fielded on several facilities with a wide variety of drive conditions, time scales, and loads. The 2D simulations of these experiments reproduce important quantities of interest including the radiation pulse energy, power, and pulse width. This match is obtained through the use of an initial condition: the amplitude of a random density perturbation imposed on the initial plasma shell. The perturbations seed the development of magnetically driven Rayleigh–Taylor instabilities which greatly affect the dynamics of the implosion and the resulting production of radiation. Analysis of such simulations allows insights into the physical processes by which these calculations reproduce the experimental results. As examples, the insights gained from the simulations of Sandia “Z” accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] experiments have allowed for the ...
Physics of Plasmas | 1999
C. Deeney; C.A. Coverdale; M.R. Douglas; T. J. Nash; Rick B. Spielman; K.W. Struve; K. G. Whitney; J.W. Thornhill; J. P. Apruzese; R. W. Clark; J. Davis; F. N. Beg; J. Ruiz-Camacho
The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%.
Physics of Plasmas | 2005
Daniel Brian Sinars; M. E. Cuneo; B. Jones; C.A. Coverdale; T. J. Nash; M.G. Mazarakis; John L. Porter; C. Deeney; David Franklin Wenger; R. G. Adams; E. P. Yu; D.E. Bliss; G. S. Sarkisov
The mass distribution and axial instability growth of wire-array Z-pinch implosions driven by 14–20 MA has been studied using high-resolution, monochromatic x-ray backlighting diagnostics. A delayed implosion is consistently observed in which persistent, dense wire cores continuously ablate plasma until they dissipate and the main implosion begins. In arrays with small interwire gaps, azimuthally correlated axial instabilities appear during the wire ablation stage and subsequently seed the early growth of magneto-Rayleigh–Taylor instabilities. The instabilities create a distributed implosion front with trailing mass that may limit the peak radiation power.