Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. L. Cline is active.

Publication


Featured researches published by T. L. Cline.


The Astrophysical Journal | 1993

BATSE observations of gamma-ray burst spectra. I: Spectral diversity

J. L. Matteson; L. A. Ford; Bradley E. Schaefer; David M. Palmer; B. J. Teegarden; T. L. Cline; M. S. Briggs; W. S. Paciesas; Geoffrey N. Pendleton; G. Fishman; C. Kouveliotou; Charles A. Meegan; Richard Wilson; P. Lestrade

We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.


Nature | 1999

Observation of contemporaneous optical radiation from a gamma-ray burst

C. Akerlof; Richard Joseph Balsano; S. D. Barthelmy; Joshua J. Bloch; P. Butterworth; D. Casperson; T. L. Cline; Sandra J. Fletcher; F. Frontera; Galen R. Gisler; John Heise; Jack G. Hills; Robert L. Kehoe; Brian J. Lee; S. L. Marshall; Timothy A. McKay; R. S. Miller; Luigi Piro; William C. Priedhorsky; John J. Szymanski; J. Wren

The origin of γ-ray bursts (GRBs) has been enigmatic since their discovery. The situation improved dramatically in 1997, when the rapid availability of precise coordinates, for the bursts allowed the detection of faint optical and radio afterglows — optical spectra thus obtained have demonstrated conclusively that the bursts occur at cosmological distances. But, despite efforts by several groups, optical detection has not hitherto been achieved during the brief duration of a burst. Here we report the detection of bright optical emission from GRB990123 while the burst was still in progress. Our observations begin 22 seconds after the onset of the burst and show an increase in brightness by a factor of 14 during the first 25 seconds; the brightness then declines by a factor of 100, at which point (700 seconds after the burst onset) it falls below our detection threshold. The redshift of this burst, z ≈ 1.6 (refs 8, 9), implies a peak optical luminosity of 5× 1049 erg s−1. Optical emission from γ-ray bursts has been generally thought to take place at the shock fronts generated by interaction of the primary energy source with the surrounding medium, where the γ-rays might also be produced. The lack of a significant change in the γ-ray light curve when the optical emission develops suggests that the γ-rays are not produced at the shock front, but closer to the site of the original explosion.


Nature | 2005

An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts

K. Hurley; S. E. Boggs; David M. Smith; R. C. Duncan; Robert P. Lin; Andreas Zoglauer; S. Krucker; G. Hurford; H. Hudson; C. Wigger; W. Hajdas; C. Thompson; I. G. Mitrofanov; A. B. Sanin; William V. Boynton; C. Fellows; A. von Kienlin; Giselher G. Lichti; T. L. Cline

Soft-γ-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806–20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic γ-ray burst. At least a significant fraction of the mysterious short-duration γ-ray bursts may therefore come from extragalactic magnetars.


Nature | 1999

A giant periodic flare from the soft γ-ray repeater SGR1900+14

K. Hurley; T. L. Cline; E. P. Mazets; S. D. Barthelmy; Paul Butterworth; F. E. Marshall; D. Palmer; R. L. Aptekar; S. Golenetskii; V. Il'Inskii; D. Frederiks; J. McTiernan; Robert E. Gold; Jack I. Trombka

Soft γ-ray repeaters are transient sources of high-energy photons; they emit sporadic and short (about 0.1 s) bursts of ‘soft’ γ-rays during periods of activity, which are often broken by long stretches of quiescence. These objects are associated with neutron stars in young supernova remnants. The event of 5 March 1979 was the most intense burst to date, and the only one that showed a clear periodicity in the signal. Here we report the detection, on 27 August 1998, of an even more intense burst from a different soft γ-ray repeater. This event was characterized by ‘hard’ γ-rays at its peak, followed by a tail 300 s long with a soft spectrum and a clear periodicity of 5.16 s. The burst was probably initiated by a massive disruption of the crust of the neutron star, followed by an outflow of energetic particles rotating with the period of the star. A comparison of the events of 27 August 1998 and 5 March 1979 supports the idea that magnetic energy plays an important role in the genesis of such events. Although these giant flares are rare, they are not unique events and may occur at any time in a neutron stars activity cycle.


The Astrophysical Journal | 2005

Global Characteristics of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by HETE-2

Takanori Sakamoto; D. Q. Lamb; Nobuyuki Kawai; Atsumasa Yoshida; C. Graziani; E. E. Fenimore; Timothy Quinn Donaghy; Masaru Matsuoka; M. Suzuki; George R. Ricker; J.-L. Atteia; Yuji Shirasaki; Toru Tamagawa; Ken'ichi Torii; Mark Corrado Galassi; John P. Doty; R. Vanderspek; Geoffrey Crew; J. Villasenor; N. Butler; Gregory Y. Prigozhin; J. G. Jernigan; C. Barraud; M. Boer; J.-P. Dezalay; J.-F. Olive; K. Hurley; A. Levine; Glen Pickslay Monnelly; F. Martel

We describe and discuss the global properties of 45 gamma-ray bursts (GRBs) observed by HETE-2 during the first 3 years of its mission, focusing on the properties of X-ray flashes (XRFs) and X-ray-rich GRBs (XRRs). We find that the numbers of XRFs, XRRs, and GRBs are comparable, and that the durations and the sky distributions of XRFs and XRRs are similar to those of GRBs. We also find that the spectral properties of XRFs and XRRs are similar to those of GRBs, except that the values of the peak energy E of the burst spectrum in νFν, the peak energy flux Fpeak, and the energy fluence SE of XRFs are much smaller (and those of XRRs are smaller) than those of GRBs. Finally, we find that the distributions of all three kinds of bursts form a continuum in the [SE(2-30 keV), SE(30-400) keV] plane, the [SE(2-400 keV), Epeak] plane, and the [Fpeak(50-300 keV), Epeak] plane. These results provide strong evidence that all three kinds of bursts arise from the same phenomenon.


Space Science Reviews | 1995

KONUS-W GAMMA-RAY BURST EXPERIMENT FOR THE GGS WIND SPACECRAFT

R. L. Aptekar; D. D. Frederiks; S. V. Golenetskii; V. N. Ilynskii; E. P. Mazets; V. N. Panov; Z. J. Sokolova; M. M. Terekhov; L. O. Sheshin; T. L. Cline; D. E. Stilwell

The Konus-W experiment to be flown on board the GGS-Wind spacecraft is designed to observe gamma-ray bursts and solar flares with moderate spectral and high time resolution. Two large scintillators are used to provide omnidirectional sensitivity. The primary scientific objectives are the study of the continuum energy spectra and spectral features of these events in the energy range of 10 keV to 10 MeV, as well as their time histories in soft, medium, and hard energy bands, with a time resolution to 2 ms.


Astronomy and Astrophysics | 2001

Detection of the optical afterglow of GRB 000630: Implications for dark bursts ?

Johan Peter Uldall Fynbo; B. L. Jensen; J. Gorosabel; J. Hjorth; H. Pedersen; P. Møller; Terence S. Abbott; A. J. Castro-Tirado; D. M. Delgado; J. Greiner; Arne A. Henden; A. Magazzù; N. Masetti; S. Merlino; J. Masegosa; Roy Ostensen; E. Palazzi; E. Pian; He Schwarz; T. L. Cline; C. Guidorzi; J Goldsten; K. Hurley; E. Mazets; T McClanahan; E. Montanari; R. Starr; J Trombka

We present the discovery of the optical transient of the long{duration gamma-ray burst GRB 000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R =2 3:04 0:08. The transient displayed a power-law decline characterized by a decay slope of = 1:035 0:097. A deep image obtained 25 days after the burst shows no indication of a contribution from a supernova or a host galaxy at the position of the transient. The closest detected galaxy is a R =2 4:68 0:15 galaxy 2.0 arcsec north of the transient. The magnitudes of the optical afterglows of GRB 980329, GRB 980613 and GRB 000630 were all R > 23 less than 24 hours from the burst epoch. We discuss the implications of this for our understanding of GRBs without detected optical transients. We conclude that i) based on the gamma-ray properties of the current sample we cannot conclude that GRBs with no detected OTs belong to another class of GRBs than GRBs with detected OTs and ii) the majority (>75%) of GRBs for which searches for optical afterglow have been unsuccessful are consistent with no detection if they were similar to bursts like GRB 000630 at optical wavelengths.


Astronomy and Astrophysics | 2001

The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;???

B. L. Jensen; J. U. Fynbo; J. Gorosabel; J. Hjorth; Stephen T. Holland; P. Møller; Bjarne Thomsen; G. Björnsson; H. Pedersen; Ingunn Burud; Arne A. Henden; Nial R. Tanvir; C. J. Davis; Paul M. Vreeswijk; E. Rol; K. Hurley; T. L. Cline; J. Trombka; Timothy P. McClanahan; R. Starr; John O. Goldsten; A. J. Castro-Tirado; J. Greiner; Coryn A. L. Bailer-Jones; M. Kümmel; Reinhard Mundt

We present Ulysses and NEAR data from the detection of the short or intermediate duration (2 s) gamma-ray burst GRB000301C (2000 March 1.41 UT). The gamma-ray burst (GRB) was localised by the Inter Planetary Network (IPN) and RXTE to an area of 50 arcmin^2. A fading optical counterpart was subsequently discovered with the Nordic Optical Telescope (NOT) about 42h after the burst. The GRB lies at the border between the long-soft and the short-hard classes of GRBs. If GRB000301C belongs to the latter class, this would be the first detection of an afterglow to a short-hard burst. We present UBRI and JHK photometry from the time of the discovery until 11 days after the burst. Finally, we present spectroscopic observations of the optical afterglow obtained with the ESO VLT Antu telescope 4 and 5 days after the burst. The optical light curve is consistent with being achromatic from 2 to 11 days after the burst and exhibits a break. A broken power-law fit yields a shallow pre-break decay power-law slope of a_1=-0.72+-0.06, a break time of t_b=4.39+-0.26 days after the burst, and a post-break slope of a_2=-2.29+-0.17, which is best explained by a sideways expanding jet in an ambient medium of constant mean density. In the optical spectrum we find absorption features that are consistent with FeII, CIV, CII, SiII and Ly-a at a redshift of 2.0404+-0.0008. We find evidence for a curved shape of the spectral energy distribution of the observed afterglow. It is best fitted with a power-law spectral distribution with index b ~ -0.7 reddened by an SMC-like extinction law with A_V~0.1 mag. Based on the Ly-a absorption line we estimate the HI column density to be log(N(HI))=21.2+-0.5. This is the first direct indication of a connection between GRB host galaxies and Damped Ly-a Absorbers.


The Astrophysical Journal | 2003

Discovery of GRB 020405 and Its Late Red Bump

P. A. Price; S. R. Kulkarni; Edo Berger; D. W. Fox; J. S. Bloom; S. G. Djorgovski; Dale A. Frail; Titus J. Galama; Fiona A. Harrison; Patrick J. McCarthy; Daniel E. Reichart; Re'em Sari; Scott A. Yost; Helmut Jerjen; K. P. Flint; A. Phillips; B. E. Warren; Timothy S. Axelrod; Roger A. Chevalier; J. Holtzman; Randy A. Kimble; Brian Paul Schmidt; J. C. Wheeler; F. Frontera; Enrico Costa; L. Piro; K. Hurley; T. L. Cline; C. Guidorzi; E. Montanari

We present the discovery of GRB 020405 made with the Interplanetary Network (IPN). With a duration of 60 s, the burst appears to be a typical long-duration event. We observed the 75 arcmin2 IPN error region with the Mount Stromlo Observatorys 50 inch robotic telescope and discovered a transient source that subsequently decayed and was also associated with a variable radio source. We identify this source as the afterglow of GRB 020405. Subsequent observations by other groups found varying polarized flux and established a redshift of 0.690 to the host galaxy. Motivated by the low redshift, we triggered observations with WFPC2 on board the Hubble Space Telescope (HST). Modeling the early ground-based data with a jet model, we find a clear red excess over the decaying optical light curves that is present between day 10 and day 141 (the last HST epoch). This bump has the spectral and temporal features expected of an underlying supernova (SN). In particular, the red color of the putative SN is similar to that of the SN associated with GRB 011121 at late time. Restricting the sample of GRBs to those with z < 0.7, a total of five bursts, red bumps at late times are found in GRB 970228, GRB 011121, and GRB 020405. It is possible that the simplest idea, namely, that all long-duration γ-ray bursts have underlying SNe with a modest dispersion in their properties (especially peak luminosity), is sufficient to explain the nondetections.


The Astrophysical Journal | 2012

Panchromatic Observations of SN 2011dh Point to a Compact Progenitor Star

Alicia M. Soderberg; R. Margutti; B. A. Zauderer; Miriam I. Krauss; B. Katz; Laura Chomiuk; Jason A. Dittmann; Ehud Nakar; Takanori Sakamoto; Nobuyuki Kawai; K. Hurley; S. D. Barthelmy; Takahiro Toizumi; Mikio Morii; Roger A. Chevalier; M. A. Gurwell; G. Petitpas; Michael P. Rupen; K. D. Alexander; Emily M. Levesque; Claes Fransson; A. Brunthaler; M. F. Bietenholz; N. N. Chugai; J. E. Grindlay; Antonio Copete; V. Connaughton; M. S. Briggs; Charles A. Meegan; A. von Kienlin

– 3 –the first three weeks after explosion. Combining these observations with earlyoptical photometry, we show that the panchromatic dataset is well-described bynon-thermal synchrotron emission (radio/mm) with inverse Compton scattering(X-ray) of a thermal population of optical photons. We derive the properties ofthe shockwave and the circumstellar environment and find a time-averaged shockvelocity of v ≈ 0.1c and a progenitor mass loss rate of M˙ ≈ 6 × 10

Collaboration


Dive into the T. L. Cline's collaboration.

Top Co-Authors

Avatar

S. Golenetskii

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Mazets

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. L. Aptekar

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Valentin Pal'Shin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

K. Hurley

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Kevin C. Hurley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. Svinkin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

S. D. Barthelmy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge