Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Stanescu is active.

Publication


Featured researches published by T. Stanescu.


Medical Physics | 2008

Patient dosimetry for hybrid MRI-radiotherapy systems

C. Kirkby; T. Stanescu; S Rathee; Marco Carlone; B. Murray; B Fallone

A novel geometry has been proposed for a hybrid magnetic resonance imaging (MRI)-linac system in which a 6 MV linac is mounted on the open end of a biplanar, low field (0.2 T) MRI magnet on a single gantry that is free to rotate around the patient. This geometry creates a scenario in which the magnetic field vector remains fixed with respect to the incident photon beam, but moves with respect to the patient as the gantry rotates. Other proposed geometries are characterized by a radiation source rotating about a fixed cylindrical magnet where the magnetic field vector remains fixed with respect to the patient. In this investigation we simulate the inherent dose distribution patterns within the two MRI-radiation source geometries using PENELOPE and EGSnrc Monte Carlo radiation transport codes with algorithms implemented to account for the magnetic field deflection of charged particles. Simulations are performed in phantoms and for clinically realistic situations. The novel geometry results in a net Lorentz force that remains fixed with respect to the patient (in the cranial-caudal direction) and results in a cumulative influence on dose distribution for a multiple beam treatment scenario. For a case where patient anatomy is reasonably homogeneous (brain plan), differences in dose compared to a conventional (no magnetic field) case are minimal for the novel geometry. In the case of a lung plan where the inhomogeneous patient anatomy allows for the magnetic field to have significant influence on charged particle transport, larger differences occur in a predictable manner. For a system using a fixed cylindrical geometry and higher magnetic field (1.5 T), differences from the case without a magnetic field are significantly greater.


Physics in Medicine and Biology | 2008

A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions.

T. Stanescu; Hans-Soenke Jans; Pervez N; Pavel Stavrev; B Fallone

The aim of this study is to develop a magnetic resonance imaging (MRI)-based treatment planning procedure for intracranial lesions. The method relies on (a) distortion correction of raw magnetic resonance (MR) images by using an adaptive thresholding and iterative technique, (b) autosegmentation of head structures relevant to dosimetric calculations (scalp, bone and brain) using an atlas-based software and (c) conversion of MR images into computed tomography (CT)-like images by assigning bulk CT values to organ contours and dose calculations performed in Eclipse (Philips Medical Systems). Standard CT + MRI-based and MRI-only plans were compared by means of isodose distributions, dose volume histograms and several dosimetric parameters. The plans were also ranked by using a tumor control probability (TCP)-based technique for heterogeneous irradiation, which is independent of radiobiological parameters. For our 3 T Intera MRI scanner (Philips Medical Systems), we determined that the total maximum image distortion corresponding to a typical brain study was about 4 mm. The CT + MRI and MRI-only plans were found to be in good agreement for all patients investigated. Following our clinical criteria, the TCP-based ranking tool shows no significant difference between the two types of plans. This indicates that the proposed MRI-based treatment planning procedure is suitable for the radiotherapy of intracranial lesions.


Medical Physics | 2012

Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT

T. Stanescu; Keith Wachowicz; David A. Jaffray

PURPOSE MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. METHODS The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air∕lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B(0)) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. RESULTS Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT∕m by using an annular phantom mimicking the water-air and water-oil χ interfaces. For quadratic geometries, the magnitude of field distortion increased rapidly with the size of the inhomogeneity up to about 10 mm and then tended to plateau. This trend became more evident for materials with a larger Δχ relative to water. The simulations showed only a slight increase in the maximum distortion values when the B(0) orientation was varied with regard to the shape of the χ inhomogeneity. In the case of patient anatomy, the largest distortion values arose at the air-soft-tissue interface. Considering the two MR-linac system configurations and comparing the field distortion values corresponding to all organ structures, the distortions tended to be larger for the biplanar magnet. The authors provide a reference table with ppm values which can be used to easily evaluate the geometric distortions for patient data as a function of B(0) and the strength of the encoding gradient. CONCLUSIONS The susceptibility distortions were quantified as a function of multiple parameters such as the χ inhomogeneity size and shape, the magnitude of B(0) and the readout gradient, and the orientation of B(0) with respect to the sample geometry. The analysis was performed for several anatomical sites and corresponding to two B(0) orientations as featured by MR-linac systems.


Medical Physics | 2007

TU‐C‐M100F‐01: Development of a Linac‐MRI System for Real‐Time ART

B Fallone; Marco Carlone; B. Murray; S Rathee; T. Stanescu; S Steciw; Keith Wachowicz; C. Kirkby

Purpose: To describe the novel design of the coupling an of MRI to a medical linac to provide real‐time tracking of the tumor and healthy tissues during irradiation by the treatment beam Method and Materials: Various embodiments are defined in our patents (Fallone, Carlone, Murray) to avoid mutual interference between the MR and the linac. Our method allows rotation of a linac with respect to the subject to allow irradiation of the subject from any angle without disturbing the magnet homogeneity. Magnetic shielding of the linac prevents disturbance from the MRI. RF signal shielding, modifications the RF‐signal triggering and pulse shaping are used to minimize linac interference of MRI RF read sequences. Various Monte Carlo calculations (EGS4 NRC and Penelope) and finite‐element analyses (Comsol) are performed in all design stages. Results: The initial design for the human system involves a bi‐planar MRI with 65 cm opening to allow rotation of the shoulders within the bore. A short 6 MV waveguide is coupled to one open end of the MR, and a beam‐stop and a projection imaging device (eg, flatpanel) is coupled to the other end. Rotation is provide by two concentric rings, and the permanent‐magnet design is preferred in the initial stage to provide stability and lack of electric wiring in the rotation process. Low fields allows very small fringe fields to minimize linac interference yet with adequate image quality of soft tissue for lungs, prostate, GBM, etc. Mutual interference issues and other issues arising externally are calculated and resolved. Conclusion: We have shown the design to be a practical, viable and realizable within a reasonable time frame. Our other presentations detail resolutions to mutual MRI‐linac interferences.


Seminars in Radiation Oncology | 2014

A Facility for Magnetic Resonance-Guided Radiation Therapy

David A. Jaffray; Marco Carlone; Michael Milosevic; Stephen Breen; T. Stanescu; Alexandra Rink; Hamideh Alasti; Anna Simeonov; Michael C. Sweitzer; Jeffrey D. Winter

Magnetic resonance (MR) imaging is routinely employed in the design of radiotherapy (RT) treatment plans for many disease sites. It is evident that tighter integration of MR imaging into the RT process would increase confidence in dose placement and facilitate the integration of new MR imaging information (including anatomical and functional imaging) into the therapy process. To this end, a dedicated MR-guided RT (MRgRT) facility has been created that integrates a state-of-the-art linear accelerator delivery system, high-dose rate brachytherapy afterloader, and superconducting MR scanner to allow MR-based online treatment guidance, adaptive replanning, and response monitoring while maintaining the clinical functionality of the existing delivery systems. This system is housed within a dedicated MRgRT suite and operates in a coordinated fashion to assure safe and efficient MRgRT treatments.


Journal of Applied Clinical Medical Physics | 2010

Investigation of a 3D system distortion correction method for MR images

T. Stanescu; Hans Sonke Jans; Keith Wachowicz; B. Gino Fallone

Interest has been growing in recent years in the development of radiation treatment planning (RTP) techniques based solely on magnetic resonance (MR) images. However, it is recognized that MR images suffer from scanner‐related and object‐induced distortions that may lead to an incorrect placement of anatomical structures. This subsequently may result in reduced accuracy in delivering treatment dose fractions in RTP. To accomplish the accurate representation of anatomical targets required by RTP, distortions must be mapped and the images rectified before being used in the clinical process. In this work, we investigate a novel, phantom‐based method that determines and corrects for 3D system‐related distortions. The algorithm consists of two key components: an adaptive control point identification and registration tool and an iterative method that finds the best estimate of 3D distortion. It was found that the 3D distortions were successfully mapped to within the voxel resolution of the raw data for a 260×260×240mm3 volume. PACS numbers: 87.61.‐c, 87.53.Tf, 87.53.Xd, 87.56.‐v, 87.56.Fc, 87.62.+n


Medical Physics | 2010

Implications of tissue magnetic susceptibility-related distortion on the rotating magnet in an MR-linac design

Keith Wachowicz; T. Stanescu; Steven D. Thomas; B Fallone

PURPOSE One of the recently published concepts that combine the soft-tissue imaging capabilities of MRI with external beam radiotherapy involves the rigid coupling of a linac with a rotating biplanar low-field MR imaging system. While such a system would prevent possible image distortion resulting from relative motion between the magnet and the linac, the rotation of the magnet around the patient can itself introduce possibilities for image distortion that need to be addressed. While there are straightforward techniques in the literature for correcting distortions from gradient nonlinearities and nonuniform magnetic fields during image reconstruction, the correction of distortions related to tissue magnetic susceptibility is more complex. This work investigates the extent of this latter distortion type under the regime of a rotating magnetic field. METHODS CT images covering patient anatomy in the head, lung, and male pelvic regions were obtained and segmented into components of air, bone, and soft tissue. Each of these three components was assigned bulk magnetic susceptibility values in accordance with those found in the literature. A finite-difference algorithm was then implemented to solve for magnetic field distortion maps should the anatomies be placed in the uniform polarizing field of an MR system. The algorithm was repeated multiple times as the polarizing field was rotated axially about the virtual patient in 15 degrees increments. In this way, a map of maximum distortion, and the range of distortion as the magnetic field is rotated about each anatomical region could be determined. The consequence of these susceptibility distortions in terms of geometric signal shift was calculated for 0.2 T, as well as another low-field system (0.5 T), and a higher field 1.5 T system for comparison, using the assumption of a frequency encoding gradient strength of 5 mT/m. RESULTS At 0.2 T, the susceptibility-related distortion was limited to less than 0.5 mm given an encoding gradient strength of 5 mT/m or higher. To maintain this same level of geometric accuracy, the 0.5 T system would require a moderately higher minimum gradient strength of 11 mT/m, and at a typical MR field strength of 1.5 T this minimum gradient strength would increase to 33 mT/m. The influence of magnetic susceptibility on mean frequency shift as the field orientation was rotated was also investigated and found to account for less than half a millimeter at 1.5 T, and negligible for low-field systems. CONCLUSIONS A study of three sites (head, lung, and prostate) that are vulnerable to magnetic susceptibility-related distortions were studied, and showed that in the context of a rotating polarizing magnet, low-field systems can maintain geometric accuracy of 0.5 mm with at most moderate limitations on sequence parameters. This conclusion will likely apply only to endogenous tissues, as implanted materials such as titanium can create field distortions much in excess of what may normally be induced in the body. Items containing such materials (hip prostheses, for example) will require individual scrutiny.


Physics in Medicine and Biology | 2009

Magnetic field effects on the energy deposition spectra of MV photon radiation

C. Kirkby; T. Stanescu; B Fallone

Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.


Medical Physics | 2004

Lag measurement in an a‐Se active matrix flat‐panel imager

C. Schroeder; T. Stanescu; S Rathee; B Fallone

Lag and residual contrast have been quantified in an amorphous selenium (a-Se) active-matrix flat-panel imager (AMFPI) as a function of frame time, kilovoltage (kV) and megavoltage (MV) x-ray photon energies and amount of radiation incident on the detector. The AMFPI contains a 200 microm thick a-Se layer deposited on a thin film transistor (TFT) array of size 8.7 cm x 8.7 cm with an 85-microm pixel pitch. For all energies, the lag (signal normalized to the signal due to exposure) for the first (n = 1) and second (n = 2) frame after exposure ranges from 0.45% to 0.91% and from 0.29% to 0.51%, respectively. The amount of lag was determined to be a function of the time after the x-ray exposure irrespective of frame time or the magnitude of exposure. The lag for MV photon energies was slightly less than that for kV photon energies. The residual contrast for all energies studied ranges from 0.41% to 0.75% and from 0.219% to 0.41% for the n = 1 and n = 2 frames, respectively. These results show that lag and residual contrast in kV and MV radiographic applications are always less than 1% for the detection system used and only depend on the time after x-ray exposure.


Medical Physics | 2014

Harmonic analysis for the characterization and correction of geometric distortion in MRI

T Tadic; David A. Jaffray; T. Stanescu

PURPOSE Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. METHODS The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplaces equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. RESULTS The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm within the central and offset ROIs, respectively. In addition, the fraction of points with a distortion magnitude greater than 1 mm is reduced from 35.6% to 2.8% and from 40.4% to 1.5%, respectively. Similarly, following correction using the reduced-order mapping, the mean distortion magnitude reduces to 0.45-0.42 mm within the central and offset ROIs, and the fraction of points with a distortion magnitude greater than 1 mm is reduced to 2.8% and 1.5%, respectively. CONCLUSIONS A novel harmonic approach to the characterization of system-related distortions in MRI is presented. This method permits a complete and accurate mapping of the DVF within a specified ROI using a limited measurement of the distortion on the ROI boundary. This technique eliminates the requirement to exhaustively sample the DVF at a dense 3D array of points, thereby permitting the design of simple, inexpensive phantoms that may incorporate additional modules for auxiliary quality assurance objectives.

Collaboration


Dive into the T. Stanescu's collaboration.

Top Co-Authors

Avatar

B Fallone

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

S Rathee

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

David A. Jaffray

Princess Margaret Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Murray

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

C. Kirkby

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

S Steciw

Cross Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M Carlone

University of Alberta

View shared research outputs
Researchain Logo
Decentralizing Knowledge