Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Taeko Inoue is active.

Publication


Featured researches published by Taeko Inoue.


Molecular Pharmacology | 2009

Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes.

Michael W. Pennington; Christine Beeton; Charles A. Galea; Brian J. Smith; Victor Chi; K. P. Monaghan; Adriana Garcia; Srikant Rangaraju; A. Giuffrida; D. Plank; George Crossley; Daniel Nugent; Ilya Khaytin; Yann Lefievre; I. Peshenko; C. Dixon; Satendra Chauhan; A. Orzel; Taeko Inoue; Xueyou Hu; R. V. Moore; Raymond S. Norton; K. G. Chandy

Kv1.3 potassium channels maintain the membrane potential of effector memory (TEM) T cells that are important mediators of multiple sclerosis, type 1 diabetes mellitus, and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5), containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin, is a potent and selective blocker of these channels. However, a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability, ShK-192, contains a nonhydrolyzable phosphotyrosine surrogate, a methionine isostere, and a C-terminal amide. ShK-192 shows the same overall fold as ShK, and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys411 of the channel. ShK-192 blocks Kv1.3 with an IC50 of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 μg/kg, ∼100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24, 48, and 72 h after the injection. ShK-192 effectively inhibits the proliferation of TEM cells and suppresses delayed type hypersensitivity when administered at 10 or 100 μg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by TEM cells.


The Journal of Neuroscience | 2013

Tau Loss Attenuates Neuronal Network Hyperexcitability in Mouse and Drosophila Genetic Models of Epilepsy

Jerrah K. Holth; Valerie C. Bomben; J. Graham Reed; Taeko Inoue; Linda Younkin; Steven G. Younkin; Robia G. Pautler; Juan Botas; Jeffrey L. Noebels

Neuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimers disease (AD). Recently, the microtubule-binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-β (Aβ) decreases hyperexcitability and normalizes the excitation/inhibition imbalance. Whether this effect of tau removal is specific to Aβ mouse models remains to be determined. Here, we examined tau as an excitability modifier in the non-AD nervous system using genetic deletion of tau in mouse and Drosophila models of hyperexcitability. Kcna1−/− mice lack Kv1.1-delayed rectifier currents and exhibit severe spontaneous seizures, early lethality, and megencephaly. Young Kcna1−/− mice retained wild-type levels of Aβ, tau, and tau phospho-Thr231. Decreasing tau in Kcna1−/− mice reduced hyperexcitability and alleviated seizure-related comorbidities. Tau reduction decreased Kcna1−/− video-EEG recorded seizure frequency and duration as well as normalized Kcna1−/− hippocampal network hyperexcitability in vitro. Additionally, tau reduction increased Kcna1−/− survival and prevented megencephaly and hippocampal hypertrophy, as determined by MRI. Bang-sensitive Drosophila mutants display paralysis and seizures in response to mechanical stimulation, providing a complementary excitability assay for epistatic interactions. We found that tau reduction significantly decreased seizure sensitivity in two independent bang-sensitive mutant models, kcc and eas. Our results indicate that tau plays a general role in regulating intrinsic neuronal network hyperexcitability independently of Aβ overexpression and suggest that reducing tau function could be a viable target for therapeutic intervention in seizure disorders and antiepileptogenesis.


PLOS ONE | 2010

Hyperglycemia induces oxidative stress and impairs axonal transport rates in mice.

Ruchi Sharma; Eric D. Buras; Tomoya Terashima; Faridis Serrano; Cynthia A. Massaad; Lingyun Hu; Brittany R. Bitner; Taeko Inoue; Lawrence Chan; Robia G. Pautler

Background While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits. Research Design and Methods T1-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively. Results STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged. Conclusion Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.


Reviews in The Neurosciences | 2011

Manganese enhanced MRI (MEMRI): neurophysiological applications

Taeko Inoue; Tabassum Majid; Robia G. Pautler

Abstract Manganese ion (Mn2+) is a calcium (Ca2+) analog that can enter neurons and other excitable cells through voltage gated Ca2+ channels. Mn2+ is also a paramagnetic that shortens the spin-lattice relaxation time constant (T1) of tissues where it has accumulated, resulting in positive contrast enhancement. Mn2+ was first investigated as a magnetic resonance imaging (MRI) contrast agent approximately 20 years ago to assess the toxicity of the metal in rats. In the late 1990s, Alan Koretsky and colleagues pioneered the use of manganese enhanced MRI (MEMRI) towards studying brain activity, tract tracing and enhancing anatomical detail. This review will describe the methodologies and applications of MEMRI in the following areas: monitoring brain activity in animal models, in vivo neuronal tract tracing and using MEMRI to assess in vivo axonal transport rates.


Molecular Neurodegeneration | 2014

Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow

Hongmei Li; Qinxi Guo; Taeko Inoue; Vinicia Assunta Polito; Katsuhiko Tabuchi; Robert E. Hammer; Robia G. Pautler; George E. Taffet; Hui Zheng

BackgroundAccumulation and deposition of β-amyloid peptides (Aβ) in the brain is a central event in the pathogenesis of Alzheimer’s disease (AD). Besides the parenchymal pathology, Aβ is known to undergo active transport across the blood–brain barrier and cerebral amyloid angiopathy (CAA) is a prominent feature in the majority of AD. Although impaired cerebral blood flow (CBF) has been implicated in faulty Aβ transport and clearance, and cerebral hypoperfusion can exist in the pre-clinical phase of Alzheimer’s disease (AD), it is still unclear whether it is one of the causal factors for AD pathogenesis, or an early consequence of a multi-factor condition that would lead to AD at late stage. To study the potential interaction between faulty CBF and amyloid accumulation in clinical-relevant situation, we generated a new amyloid precursor protein (APP) knock-in allele that expresses humanized Aβ and a Dutch mutation in addition to Swedish/London mutations and compared this line with an equivalent knock-in line but in the absence of the Dutch mutation, both crossed onto the PS1M146V knock-in background.ResultsIntroduction of the Dutch mutation results in robust CAA and parenchymal Aβ pathology, age-dependent reduction of spatial learning and memory deficits, and CBF reduction as detected by fMRI. Direct manipulation of CBF by transverse aortic constriction surgery on the left common carotid artery caused differential changes in CBF in the anterior and middle region of the cortex, where it is reduced on the left side and increased on the right side. However these perturbations in CBF resulted in the same effect: both significantly exacerbate CAA and amyloid pathology.ConclusionsOur study reveals a direct and positive link between vascular and parenchymal Aβ; both can be modulated by CBF. The new APP knock-in mouse model recapitulates many symptoms of AD including progressive vascular and parenchymal Aβ pathology and behavioral deficits in the absence of APP overexpression.


Scientific Reports | 2016

Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation

Redwan Huq; Errol L. G. Samuel; William K. A. Sikkema; Lizanne G. Nilewski; Thomas Lee; Mark R. Tanner; Fatima S. Khan; Paul Porter; Rajeev B. Tajhya; Rutvik S. Patel; Taeko Inoue; Robia G. Pautler; David B. Corry; James M. Tour; Christine Beeton

Autoimmune diseases mediated by a type of white blood cell—T lymphocytes—are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants. Furthermore, the affinity of carbon nanoparticles for specific cell types represents an emerging tactic for cell-targeted therapy. Here, we report that nontoxic poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), known scavengers of the ROS superoxide (O2•−) and hydroxyl radical, are preferentially internalized by T lymphocytes over other splenic immune cells. We use this selectivity to inhibit T cell activation without affecting major functions of macrophages, antigen-presenting cells that are crucial for T cell activation. We also demonstrate the in vivo effectiveness of PEG-HCCs in reducing T lymphocyte-mediated inflammation in delayed-type hypersensitivity and in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results suggest the preferential targeting of PEG-HCCs to T lymphocytes as a novel approach for T lymphocyte immunomodulation in autoimmune diseases without affecting other immune cells.


Magnetic Resonance Insights | 2012

Improvements in a Mouse Model of Alzheimer's Disease Through SOD2 Overexpression are Due to Functional and Not Structural Alterations

Brittany R. Bitner; Carlos Perez-Torres; Lingyun Hu; Taeko Inoue; Robia G. Pautler

Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of Alzheimers disease. We and others have shown that over expression of the mitochondrial antioxidant superoxide dismutase 2 (SOD-2) can improve many of the pathologies in the Tg2576 mouse model of Alzheimers disease that harbors the Swedish mutation in the amyloid precursor protein. However, it is not clear if these improvements are due to functional improvements or structural/anatomical changes. To answer this question, we used diffusion tensor imaging (DTI) to assess the structural integrity of white matter tracts in the control mice, Tg2576 mouse and Tg2576 mice over expressing SOD-2. We observed minimal differences in diffusion parameters with SOD-2 over expression in this model indicating that the improvements we previously reported are due to functional changes and not any alterations to the white matter tractography.


Neuro-oncology | 2018

Exercise ameliorates neurocognitive impairments in a translational model of pediatric radiotherapy

Iman Sahnoune; Taeko Inoue; Shelli R. Kesler; Shaefali P. Rodgers; Omaima M. Sabek; Steen E. Pedersen; Janice A. Zawaski; Katharine H. Nelson; M. Douglas Ris; J. Leigh Leasure; M. Waleed Gaber

Background While cranial radiation therapy (CRT) is an effective treatment, healthy areas surrounding irradiation sites are negatively affected. Frontal lobe functions involving attention, processing speed, and inhibition control are impaired. These deficits appear months to years after CRT and impair quality of life. Exercise has been shown to rejuvenate the brain and aid in recovery post-injury through its effects on neurogenesis and cognition. Methods We developed a juvenile rodent CRT model that reproduces neurocognitive deficits. Next, we utilized the model to test whether exercise ameliorates these deficits. Fischer rats (31 days old) were irradiated with a fractionated dose of 4 Gy × 5 days, trained and tested at 6, 9, and 12 months post-CRT using 5-choice serial reaction time task. After testing, fixed rat brains were imaged using diffusion tensor imaging and immunohistochemistry. Results CRT caused early and lasting impairments in task acquisition, accuracy, and latency to correct response, as well as causing stunting of growth and changes in brain volume and diffusion. Exercising after irradiation improved acquisition, behavioral control, and processing speed, mitigated the stunting of brain size, and increased brain fiber numbers compared with sedentary CRT values. Further, exercise partially restored global connectome organization, including assortativity and characteristic path length, and while it did not improve the specific regional connections that were lowered by CRT, it appeared to remodel these connections by increasing connectivity between alternate regional pairs. Conclusions Our data strongly suggest that exercise may be useful in combination with interventions aimed at improving cognitive outcome following pediatric CRT.


Radiation Research | 2017

Investigating the Abscopal Effects of Radioablation on Shielded Bone Marrow in Rodent Models Using Multimodality Imaging

Solmaz F. Afshar; Janice A. Zawaski; Taeko Inoue; David Rendon; Arthur W. Zieske; Jyotinder N. Punia; Omaima M. Sabek; M. Waleed Gaber

The abscopal effect is the response to radiation at sites that are distant from the irradiated site of an organism, and it is thought to play a role in bone marrow (BM) recovery by initiating responses in the unirradiated bone marrow. Understanding the mechanism of this effect has applications in treating BM failure (BMF) and BM transplantation (BMT), and improving survival of nuclear disaster victims. Here, we investigated the use of multimodality imaging as a translational tool to longitudinally assess bone marrow recovery. We used positron emission tomography/computed tomography (PET/CT), magnetic resonance imaging (MRI) and optical imaging to quantify bone marrow activity, vascular response and marrow repopulation in fully and partially irradiated rodent models. We further measured the effects of radiation on serum cytokine levels, hematopoietic cell counts and histology. PET/CT imaging revealed a radiation-induced increase in proliferation in the shielded bone marrow (SBM) compared to exposed bone marrow (EBM) and sham controls. T2-weighted MRI showed radiation-induced hemorrhaging in the EBM and unirradiated SBM. In the EBM and SBM groups, we found alterations in serum cytokine and hormone levels and in hematopoietic cell population proportions, and histological evidence of osteoblast activation at the bone marrow interface. Importantly, we generated a BMT mouse model using fluorescent-labeled bone marrow donor cells and performed fluorescent imaging to reveal the migration of bone marrow cells from shielded to radioablated sites. Our study validates the use of multimodality imaging to monitor bone marrow recovery and provides evidence for the abscopal response in promoting bone marrow recovery after irradiation.


Frontiers in Cardiovascular Medicine | 2018

Echocardiography Differentiates Lethally Irradiated Whole-Body From Partial-Body Exposed Rats

Taeko Inoue; Janice A. Zawaski; Vivien A. Sheehan; celeste Kanne; Alireza Paikari; Caterina C. Kaffes; Poonam Sarkar; Omaima M. Sabek; M. Waleed Gaber

Background: Acute radiation syndrome (ARS) affects morbidity and mortality dependent on the amount of body exposed. We propose the use of echocardiography (EC) to differentiate between survivors and non-survivors by measuring changes in cardiac function (CF) and pulmonary arterial function (PAF). We also investigate the role of rheology in our observed changes. Methods and Results: Rats were irradiated to the whole body (WB) or partial body with two-legs shielded (2LS) at a lethal dose of 7.5Gy. EC and magnetic resonance imaging were performed, and rheological measurements conducted. Only 2LS survived past 12-days post-exposure and their CF and PAR were not significantly different from baseline. WB was significantly different from both baseline and 2LS in stroke volume (P < 0.05), velocity time integral (VTI; P < 0.05) and pulmonary artery acceleration time (PAAT; P < 0.05). Differences were identified as early as six-days post-exposure, where VTI and PAAT were significantly (P < 0.05) decreased in WB versus baseline but only PAAT was different from 2LS. Blood viscosity was significantly lower in the WB versus baseline and 2LS (P < 0.0001). WB exhibited a significant rise in dense red blood cells versus baseline (P < 0.01) and 2LS (P < 0.01). Cell-free hemoglobin, a contributor to pulmonary artery hypertension and vasculopathy, was significantly elevated in WB vs. sham. Conclusions: Non-invasive and readily available imaging can be used to identify critically affected victims. Our findings point to heart failure as one possible cause of death in WB exposed animals, potentially exacerbated by rheological, hemolytic, and pulmonary factors, and the importance of developing radiomitigators against cardiac ARS mortality.

Collaboration


Dive into the Taeko Inoue's collaboration.

Top Co-Authors

Avatar

Robia G. Pautler

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christine Beeton

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jerrah K. Holth

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Juan Botas

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

M. Waleed Gaber

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Graham Reed

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge