Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tahir Jamil is active.

Publication


Featured researches published by Tahir Jamil.


International Journal of Biological Macromolecules | 2013

Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery.

Muhammad Shahid; Shazia Anwer Bukhari; Yousra Gul; Hira Munir; Fozia Anjum; Mohammad Zuber; Tahir Jamil; Khalid Mahmood Zia

This article is aimed to discuss the modification of guar gum through microwave irradiation by varying the time of irradiation. The characterization of the modified products was carried out using FTIR spectroscopic analysis. The FT-IR spectrum of the pure guar gum (GG) sample showed a broad peak at 3298 cm(-1) while the modified GG sample displayed a peak at 1541 cm(-1) which was absent in the crude sample. The X-ray diffraction (XRD) analysis confirmed the increase in crystallinity due to grafting of the sample with polyacrylamide (GG-g-PAM). Scanning electron microscope (SEM) images revealed that granular form of guar gum was changed into fibrillar structure after grafting. Thermo-gravimetric analysis of the modified samples was also carried out and discussed. The role of guar gum as a matrix for controlled release of drug triamcinolone was evaluated. The GG-acrylamide grafted samples presented a correlation between drug release and time of microwave exposure. The results revealed that such modified product has potential applications in colonic drug delivery system.


Carbohydrate Polymers | 2015

Fabrication of tethered carbon nanotubes in cellulose acetate/polyethylene glycol-400 composite membranes for reverse osmosis.

Aneela Sabir; Muhammad Shafiq; Atif Islam; Afsheen Sarwar; Muhammad Rizwan Dilshad; Amir Shafeeq; Muhammad Taqi Zahid Butt; Tahir Jamil

In this study pristine multi-walled carbon nanotubes (MWCNTs) were surface engineered (SE) in strong acidic medium by oxidation purification method to form SE-MWCNT. Five different amount of SE-MWCNT ranging from 0.1 to 0.5 wt% were thoroughly and uniformly dispersed in cellulose acetate/polyethylene glycol (CA/PEG400) polymer matrix during synthesis of membrane by dissolution casting method. The structural analysis, surface morphology and roughness was carried out by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively, which showed that the dispersed SE-MWCNT was substantially tethered in CA/PEG400 polymer matrix membrane. The thermogravimetric analysis (TGA) of membranes also suggested some improvement in thermal properties with the addition of SE-MWCNT. Finally, the performance of these membranes was assessed for suitability in drinking water treatment. The permeation flux and salt rejection were determined by using indigenously fabricated reverse osmosis pilot plant with 1000 ppm NaCl feed solution. The results showed that the tethered SE-MWCNT/CA/PEG400 polymer matrix membrane, with strong SE-MWCNTs/polymer matrix interaction, improved the salt rejection performance of the membrane with the salt rejection of 99.8% for the highest content of SE-MWCNT.


International Journal of Biological Macromolecules | 2014

Synthesis and molecular characterization of chitosan based polyurethane elastomers using aromatic diisocyanate

Khalid Mahmood Zia; Sohail Anjum; Mohammad Zuber; Muhammad Mujahid; Tahir Jamil

The present research work was performed to synthesize a new series of chitosan based polyurethane elastomers (PUEs) using poly(ɛ-caprolactone) (PCL). The chitosan based PUEs were prepared by step-growth polymerization technique using poly(ɛ-caprolactone) (PCL) and 2,4-toluene diisocyanate (TDI). In the second step the PU prepolymer was extended with different mole ratios of chitosan and 1,4-butane diol (BDO). Molecular engineering was carried out during the synthesis. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed chitosan based PUEs structure. Internal morphology of the prepared PUEs was studied using SEM analysis. The SEM images confirmed the incorporation of chitosan molecules into the PU backbone.


International Journal of Biological Macromolecules | 2015

Injectable biopolymer based hydrogels for drug delivery applications.

Sadia Atta; Shaista Khaliq; Atif Islam; Irtaza Javeria; Tahir Jamil; Muhammad Makshoof Athar; Muhammad Shafiq; Abdul Ghaffar

Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications.


International Journal of Biological Macromolecules | 2011

Preparation of rich handles soft cellulosic fabric using amino silicone based softener. Part-I: Surface smoothness and softness properties.

Khalid Mahmood Zia; Shazia Tabassum; Syed Barkaat-ul-Hasin; Mohammad Zuber; Tahir Jamil; Muhammad Asghar Jamal

A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener.


International Journal of Biological Macromolecules | 2011

Preparation of rich handles soft cellulosic fabric using amino silicone based softener, part II: colorfastness properties.

Mohammad Zuber; Khalid Mahmood Zia; Shazia Tabassum; Tahir Jamil; Syed Barkaat-ul-Hasin; Muhammad Kaleem Khosa

The preparation of amino silicone based softeners with different emulsifiers was carried out and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. The softened fabrics have high surface area, so poorly performance in washing and rubbing fastness. It is obvious from the results of colorfastness to rubbing and washing that some of the samples of the dyed fabric treated with prepared softeners have shown some poor rating as compared to the untreated fabrics. However the other two samples have shown acceptable rubbing fastness results without losing softness and permanent handle. It can be observed that washing of the printed treated fabric remains unaffected almost in all the studied samples. Moreover, the application of the prepared softeners has imparted anti pilling property to the fabric. It can be seen that there is a remarkable increase in weights of treated fabrics as compared to the untreated fabrics.


Carbohydrate Polymers | 2016

Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan.

Younus H. Khan; Atif Islam; Afsheen Sarwar; Shahzad Maqsood Khan; Muhammad Azeem Munawar; Saba Zia; Aneela Sabir; Muhammad Shafiq; Tahir Jamil

Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields.


Korean Journal of Chemical Engineering | 2014

Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate

Muhammad Fiayyaz; Khalid Mahmood Zia; Mohammad Zuber; Tahir Jamil; Muhammad Kaleem Khosa; Muhammad Asghar Jamal

Polyurethanes (PUs) prepolymers blended with bentonite nanoclay and without bentonite nanoclay were prepared by the reaction of toluene-2,4-diisocyanate (TDI) and hydroxyl terminated polybutadiene (HTPB), and the chain was further extended with 1,4-butane diol (1,4-BDO) to get final polyurethane nanocomposites (PUNC). A mixture of polymer and bentonite clay enriched in montmorillonite (MMT) was formed in solution polymerization, in which MMT dispersed depending on interaction of MMT with polymer chains. The molecular structure of the monomers and the prepared PU nanocomposites was confirmed by FTIR. A series of PUNCs were prepared by varying the percent compositions of bentonite nanoclay into the PU matrix. The existence of the clay in to the PU was confirmed by scanning electron microscope (SEM). SEM images verified the good dispersion of the bentonite nanoclay in PU matrix.


Carbohydrate Polymers | 2016

Conjugation of silica nanoparticles with cellulose acetate/polyethylene glycol 300 membrane for reverse osmosis using MgSO4 solution.

Aneela Sabir; Muhammad Shafiq; Atif Islam; Faiza Jabeen; Amir Shafeeq; Adnan Ahmad; Muhammad Taqi Zahid Butt; Karl I. Jacob; Tahir Jamil

Thermally-induced phase separation (TIPS) method was used to synthesize polymer matrix (PM) membranes for reverse osmosis from cellulose acetate/polyethylene glycol (CA/PEG300) conjugated with silica nanoparticles (SNPs). Experimental data showed that the conjugation of SNPs changed the surface properties as dense and asymmetric composite structure. The results were explicitly determined by the permeability flux and salt rejection efficiency of the PM-SNPs membranes. The effect of SNPs conjugation on MgSO4 salt rejection was more significant in magnitude than on permeation flux i.e. 2.38 L/m(2)h. FTIR verified that SNPs were successfully conjugated on the surface of PM membrane. DSC of PM-SNPs shows an improved Tg from 76.2 to 101.8 °C for PM and PM-S4 respectively. Thermal stability of the PM-SNPs membranes was observed by TGA which was significantly enhanced with the conjugation of SNPs. The micrographs of SEM and AFM showed the morphological changes and increase in the valley and ridges on membrane surface. Experimental data showed that the PM-S4 (0.4 wt% SNPs) membrane has maximum salt rejection capacity and was selected as an optimal membrane.


Journal of Composite Materials | 2015

Fabrication and thermal characteristics of functionalized carbon nanotubes impregnated polydimethylsiloxane nanocomposites

Sadia Sagar; Nadeem Iqbal; Asghari Maqsood; Muhammad Shahid; Nazar Abbas Shah; Tahir Jamil; M. Bassyouni

Multiwalled carbon nanotubes (MWCNTs) were modified to covalently attach the carboxylic moiety with their surfaces. Variant concentrations of functionalized multiwalled carbon nanotubes (F-MWCNTs) were introduced into polydimethylsiloxane (PDMS) adopting solution mixing technique. Fourier transform infrared spectroscopy (FTIR) confirms the carboxy functionalization presence on the surface of the nanotubes. X-ray diffraction (XRD) patterns for both MWCNTs and F-MWCNTs illustrate that the crystallinity does not alter with surface modification of the nanotubes. Experimental results simulated that electrical conductivity of the nanocomposites was augmented with increasing filler concentration in the host matrix. Thermal conductivity and thermal impedance of the nanocomposite specimens were evaluated according to developed methodologies and the accumulative data revealed the nanocomposites thermal transport dependence on the F-MWCNTs doping concentration in the host polymer matrix. Thermal stability enhancement with increasing filler incorporation into the polymer matrix was observed in thermogravimetric/differential thermal analyzer (TG/DTA) contours. Crystallization, glass transition, and melting temperatures were examined using differential scanning calorimeter (DSC) and it was observed that phase transition temperatures of the composite specimens can be tuned by varying the nanotubes to matrix ratio. Scanning electron microscopy and energy dispersive x-ray spectroscopy were carried out to analyze the surface morphology/composition of the fabricated nanocomposites and dispersion of functionalized and pristine MWCNTs in the polymer matrix.

Collaboration


Dive into the Tahir Jamil's collaboration.

Top Co-Authors

Avatar

Atif Islam

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Muhammad Shafiq

Pakistan Institute of Engineering and Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneela Sabir

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adnan Ahmad

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saba Zia

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge