Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tak Yung Man is active.

Publication


Featured researches published by Tak Yung Man.


Nature Cell Biology | 2015

Hepatic progenitor cells of biliary origin with liver repopulation capacity

Wei-Yu Lu; Tom Bird; Luke Boulter; Atsunori Tsuchiya; Alicia M. Cole; Trevor Hay; Rachel Guest; Davina Wojtacha; Tak Yung Man; Alison C. MacKinnon; Rachel A. Ridgway; Timothy Kendall; Michael Williams; Thomas Jamieson; Alex Raven; David C. Hay; John P. Iredale; Alan Richard Clarke; Owen J. Sansom; Stuart J. Forbes

Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.


Journal of Immunology | 2006

Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes.

James S. Gilmour; Agnes E. Coutinho; Jean-Francois Cailhier; Tak Yung Man; Michael F. Clay; Graham Thomas; Hayley J. Harris; John J. Mullins; Jonathan R. Seckl; John Savill; Karen E. Chapman

Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11β-hydroxysteroid dehydrogenases (11β-HSDs) modulates cellular steroid action. 11β-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11β-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11β-HSD1, as 11β-HSD1 mRNA, but not 11β-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1−/− macrophages, and carbenoxolone, an 11β-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1−/− mice. These data point to an early role for 11β-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.


Gastroenterology | 2015

CSF1 Restores Innate Immunity After Liver Injury in Mice and Serum Levels Indicate Outcomes of Patients With Acute Liver Failure

Benjamin M. Stutchfield; Daniel J. Antoine; Alison C. MacKinnon; Deborah J. Gow; Calum C. Bain; Catherine A. Hawley; Michael J. Hughes; Benjamin Francis; Davina Wojtacha; Tak Yung Man; James W. Dear; Luke Devey; Alan M. Mowat; Jeffrey W. Pollard; B. Kevin Park; Stephen J. Jenkins; Kenneth J. Simpson; David A. Hume; Stephen J. Wigmore; Stuart J. Forbes

Background & Aims Liver regeneration requires functional liver macrophages, which provide an immune barrier that is compromised after liver injury. The numbers of liver macrophages are controlled by macrophage colony-stimulating factor (CSF1). We examined the prognostic significance of the serum level of CSF1 in patients with acute liver injury and studied its effects in mice. Methods We measured levels of CSF1 in serum samples collected from 55 patients who underwent partial hepatectomy at the Royal Infirmary Edinburgh between December 2012 and October 2013, as well as from 78 patients with acetaminophen-induced acute liver failure admitted to the Royal Infirmary Edinburgh or the University of Kansas Medical Centre. We studied the effects of increased levels of CSF1 in uninjured mice that express wild-type CSF1 receptor or a constitutive or inducible CSF1-receptor reporter, as well as in chemokine receptor 2 (Ccr2)-/- mice; we performed fate-tracing experiments using bone marrow chimeras. We administered CSF1-Fc (fragment, crystallizable) to mice after partial hepatectomy and acetaminophen intoxication, and measured regenerative parameters and innate immunity by clearance of fluorescent microbeads and bacterial particles. Results Serum levels of CSF1 increased in patients undergoing liver surgery in proportion to the extent of liver resected. In patients with acetaminophen-induced acute liver failure, a low serum level of CSF1 was associated with increased mortality. In mice, administration of CSF1-Fc promoted hepatic macrophage accumulation via proliferation of resident macrophages and recruitment of monocytes. CSF1-Fc also promoted transdifferentiation of infiltrating monocytes into cells with a hepatic macrophage phenotype. CSF1-Fc increased innate immunity in mice after partial hepatectomy or acetaminophen-induced injury, with resident hepatic macrophage as the main effector cells. Conclusions Serum CSF1 appears to be a prognostic marker for patients with acute liver injury. CSF1 might be developed as a therapeutic agent to restore innate immune function after liver injury.


Nature | 2017

Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration

Alexander Raven; Wei-Yu Lu; Tak Yung Man; Sofia Ferreira-Gonzalez; Eoghan O’Duibhir; Benjamin J. Dwyer; John P. Thomson; Richard R. Meehan; Roman L. Bogorad; Victor Koteliansky; Yuri Kotelevtsev; Charles ffrench-Constant; Luke Boulter; Stuart J. Forbes

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired—a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of β1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by β1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.


American Journal of Physiology-endocrinology and Metabolism | 2011

Dietary manipulation reveals an unexpected inverse relationship between fat mass and adipose 11β-hydroxysteroid dehydrogenase type 1.

Tak Yung Man; Zoi Michailidou; Adnan Gokcel; Lynne Ramage; Karen E. Chapman; Christopher J. Kenyon; Jonathan R. Seckl; Nicholas M. Morton

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11β-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11β-HSD1 levels. To identify the specific dietary fats that regulate adipose 11β-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11β-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11β-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11β-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11β-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11β-HSD1. The dynamic depot-selective relationship between adipose 11β-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.


PLOS ONE | 2012

Regulation of adipocyte 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) by CCAAT/enhancer-binding protein (C/EBP) β isoforms, LIP and LAP.

Cristina L. Esteves; Val Kelly; Valérie Bégay; Tak Yung Man; Nicholas M. Morton; Achim Leutz; Jonathan R. Seckl; Karen E. Chapman

11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF)-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP) family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP) and liver-enriched activator protein (LAP) (C/EBPβ-LIP:LAP) is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ((+/L)) mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβ(ΔuORF) mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER) stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet.


Alimentary Pharmacology & Therapeutics | 2017

Patients with the worst outcomes after paracetamol (acetaminophen)-induced liver failure have an early monocytopenia

Joanna Moore; Alison C. MacKinnon; Tak Yung Man; Jonathan R. Manning; Stuart J. Forbes; Kenneth J. Simpson

Acute liver failure (ALF) is associated with significant morbidity and mortality. Studies have implicated the immune response, especially monocyte/macrophages as being important in dictating outcome.


Journal of Endocrinology | 2017

Macrophage 11β-HSD-1 deficiency promotes inflammatory angiogenesis

Zhenguang Zhang; Agnes E. Coutinho; Tak Yung Man; Tiina Kipari; Patrick W. F. Hadoke; Donald Salter; Jonathan R. Seckl; Karen E. Chapman

11β-Hydroxysteroid dehydrogenase-1 (11β-HSD1) predominantly converts inert glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid levels. 11β-HSD1 is dynamically regulated during inflammation, including in macrophages where it regulates phagocytic capacity. The resolution of inflammation in some disease models including inflammatory arthritis is impaired by 11β-HSD1 deficiency or inhibition. However, 11β-HSD1 deficiency/inhibition also promotes angiogenesis, which is beneficial in mouse models of surgical wound healing, myocardial infarction or obesity. The cell types responsible for the anti-inflammatory and anti-angiogenic roles of 11β-HSD1 have not been characterised. Here, we generated Hsd11b1MKO mice with LysM-Cre mediated deletion of Hsd11b1 to investigate whether 11β-HSD1 deficiency in myeloid phagocytes is pro-angiogenic and/or affects the resolution of inflammation. Resolution of inflammatory K/BxN-induced arthritis was impaired in Hsd11b1MKO mice to a similar extent as in mice globally deficient in 11β-HSD1. This was associated with >2-fold elevation in levels of the endothelial marker Cdh5 mRNA, suggesting increased angiogenesis in joints of Hsd11b1MKO mice following arthritis. A pro-angiogenic phenotype was confirmed by measuring angiogenesis in subcutaneously implanted polyurethane sponges, in which Hsd11b1MKO mice showed 20% greater vessel density than their littermate controls, associated with higher expression of Cdh5. Thus, 11β-HSD1 deficiency in myeloid phagocytes promotes angiogenesis. Targeting 11β-HSD1 in macrophages may be beneficial in tissue repair.


Nature Communications | 2018

Paracrine cellular senescence exacerbates biliary injury and impairs regeneration

Sofia Ferreira-Gonzalez; Wei-Yu Lu; Alexander Raven; Benjamin J. Dwyer; Tak Yung Man; Eoghan O’Duibhir; Philip J. Starkey Lewis; Lara Campana; Timothy Kendall; Tom Bird; Núria Tarrats; Juan Carlos Acosta; Luke Boulter; Stuart J. Forbes

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFβ production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFβ-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFβ as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.Senescence has been suggested as causing biliary cholangiopathies but how this is regulated is unclear. Here, the authors generate a mouse model of biliary senescence by deleting Mdm2 in bile ducts and show that inhibiting TGFβ limits senescence-dependent aggravation of cholangiopathies.


Nature | 2018

Corrigendum: Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration

Alexander Raven; Wei-Yu Lu; Tak Yung Man; Sofia Ferreira-Gonzalez; Eoghan O'Duibhir; Benjamin J. Dwyer; John P. Thomson; Richard R. Meehan; Roman L. Bogorad; Victor Koteliansky; Yuri Kotelevtsev; Charles ffrench-Constant; Luke Boulter; Stuart J. Forbes

This corrects the article DOI: 10.1038/nature23015

Collaboration


Dive into the Tak Yung Man's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke Boulter

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Wei-Yu Lu

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge