Wei-Yu Lu
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wei-Yu Lu.
Nature Cell Biology | 2015
Wei-Yu Lu; Tom Bird; Luke Boulter; Atsunori Tsuchiya; Alicia M. Cole; Trevor Hay; Rachel Guest; Davina Wojtacha; Tak Yung Man; Alison C. MacKinnon; Rachel A. Ridgway; Timothy Kendall; Michael Williams; Thomas Jamieson; Alex Raven; David C. Hay; John P. Iredale; Alan Richard Clarke; Owen J. Sansom; Stuart J. Forbes
Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Tom Bird; Wei-Yu Lu; Luke Boulter; Sabrina Gordon-Keylock; Rachel A. Ridgway; Michael Williams; Jessica Taube; James Thomas; Davina Wojtacha; Adriana Gambardella; Owen J. Sansom; John P. Iredale; Stuart J. Forbes
Tissue progenitor cells are an attractive target for regenerative therapy. In various organs, bone marrow cell (BMC) therapy has shown promising preliminary results, but to date no definite mechanism has been demonstrated to account for the observed benefit in organ regeneration. Tissue injury and regeneration is invariably accompanied by macrophage infiltration, but their influence upon the progenitor cells is incompletely understood, and direct signaling pathways may be obscured by the multiple roles of macrophages during organ injury. We therefore examined a model without injury; a single i.v. injection of unfractionated BMCs in healthy mice. This induced ductular reactions (DRs) in healthy mice. We demonstrate that macrophages within the unfractionated BMCs are responsible for the production of DRs, engrafting in the recipient liver and localizing to the DRs. Engrafted macrophages produce the cytokine TWEAK (TNF-like weak inducer of apoptosis) in situ. We go on to show that recombinant TWEAK activates DRs and that BMC mediated DRs are TWEAK dependent. DRs are accompanied by liver growth, occur in the absence of liver tissue injury and hepatic progenitor cells can be isolated from the livers of mice with DRs. Overall these results reveal a hitherto undescribed mechanism linking macrophage infiltration to DRs in the liver and highlight a rationale for macrophage derived cell therapy in regenerative medicine.
Journal of Clinical Investigation | 2013
Luke Boulter; Wei-Yu Lu; Stuart J. Forbes
The liver is a complex organ that requires multiple rounds of cell fate decision for development and homeostasis throughout the lifetime. During the earliest phases of organogenesis, the liver acquires a separate lineage from the pancreas and the intestine, and subsequently, the liver bud must appropriately differentiate to form metabolic hepatocytes and cholangiocytes for proper hepatic physiology. In addition, throughout life, the liver is bombarded with chemical and pathological insults, which require the activation and correct differentiation of adult progenitor cells. This Review seeks to provide an overview of the complex signaling relationships that allow these tightly regulated processes to occur.
Nature | 2017
Alexander Raven; Wei-Yu Lu; Tak Yung Man; Sofia Ferreira-Gonzalez; Eoghan O’Duibhir; Benjamin J. Dwyer; John P. Thomson; Richard R. Meehan; Roman L. Bogorad; Victor Koteliansky; Yuri Kotelevtsev; Charles ffrench-Constant; Luke Boulter; Stuart J. Forbes
After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired—a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of β1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by β1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.
Hepatology | 2014
Atsunori Tsuchiya; Wei-Yu Lu; Birgit Weinhold; Luke Boulter; Benjamin M. Stutchfield; Michael Williams; Rachel Guest; Sarah E. Minnis-Lyons; Alison C. MacKinnon; David Schwarzer; Takafumi Ichida; Minoru Nomoto; Yutaka Aoyagi; Rita Gerardy-Schahn; Stuart J. Forbes
In severe liver injury, ductular reactions (DRs) containing bipotential hepatic progenitor cells (HPCs) branch from the portal tract. Neural cell adhesion molecule (NCAM) marks bile ducts and DRs, but not mature hepatocytes. NCAM mediates interactions between cells and surrounding matrix; however, its role in liver development and regeneration is undefined. Polysialic acid (polySia), a unique posttranslational modifier of NCAM, is produced by the enzymes, ST8SiaII and ST8SiaIV, and weakens NCAM interactions. The role of polySia with NCAM synthesizing enzymes ST8SiaII and ST8SiaIV were examined in HPCs in vivo using the choline‐deficient ethionine‐supplemented and 3,5‐diethoxycarbonyl‐1,4‐dihydrocollidine diet models of liver injury and regeneration, in vitro using models of proliferation, differentiation, and migration, and by use of mouse models with gene defects in the polysialyltransferases (St8sia 2+/−4+/−, and St8sia2−/−4−/−). We show that, during liver development, polySia is required for the correct formation of bile ducts because gene defects in both the polysialyltransferases (St8sia2+/−4+/− and St8sia2−/−4−/− mice) caused abnormal bile duct development. In normal liver, there is minimal polySia production and few ductular NCAM+ cells. Subsequent to injury, NCAM+ cells expand and polySia is produced by DRs/HPCs through ST8SiaIV. PolySia weakens cell‐cell and cell‐matrix interactions, facilitating HGF‐induced migration. Differentiation of HPCs to hepatocytes in vitro results in both transcriptional down‐regulation of polySia and cleavage of polySia‐NCAM. Cleavage of polySia by endosialidase (endoN) during liver regeneration reduces migration of DRs into parenchyma. Conclusion: PolySia modification of NCAM+ ductules weakens cell‐cell and cell‐matrix interactions, allowing DRs/HPCs to migrate for normal development and regeneration. Modulation of polySia levels may provide a therapeutic option in liver regeneration. (Hepatology 2014;60:1727–1740)
Proceedings of the National Academy of Sciences of the United States of America | 2016
Rachel Guest; Luke Boulter; Benjamin J. Dwyer; Timothy Kendall; Tak-Yung Man; Sarah E. Minnis-Lyons; Wei-Yu Lu; Andrew Robson; Sofia Ferreira Gonzalez; Alexander Raven; Davina Wojtacha; Jennifer P. Morton; Mina Komuta; Tania Roskams; Stephen J. Wigmore; Owen J. Sansom; Stuart J. Forbes
Significance Clinical outcomes in cholangiocarcinoma (CC) are poor; few patients are candidates for curative resection, and palliative chemotherapy produces only modest effects on survival. With an increasing incidence, new targets are urgently needed. Notch has been identified as having potential to induce CC when transgenically overexpressed, and this study aimed to characterize how endogenous Notch might drive tumorigenesis. We identify the atypical receptor Notch3 as differentially overactivated in CCs in humans, rats, and mice, with genetic deletion significantly reducing CC growth. Notch3 sustains tumor cell survival through PI3k/Akt activation via a noncanonical mechanism independent of Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ), presenting an opportunity to target the pathway without disrupting classical Notch and bypassing toxicities associated with γ-secretase inhibitors. The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.
Science Translational Medicine | 2018
Tom Bird; Miryam Müller; Luke Boulter; David F. Vincent; Rachel A. Ridgway; Elena Lopez-Guadamillas; Wei-Yu Lu; Thomas Jamieson; Olivier Govaere; Andrew D. Campbell; Sofia Ferreira-Gonzalez; Alicia M. Cole; Trevor Hay; Kenneth J. Simpson; William Clark; Ann Hedley; Mairi Clarke; Pauline Gentaz; Colin Nixon; Steven Bryce; Christos Kiourtis; Joep Sprangers; Robert J. B. Nibbs; Nico van Rooijen; Laurent Bartholin; Steven R. McGreal; Udayan Apte; Simon T. Barry; John P. Iredale; Alan Richard Clarke
Inhibiting acute injury–induced senescence mediated by TGFβ signaling in regenerative epithelium improves liver regeneration. Setting liver regeneration free The liver is an excellent model of organ regeneration; however, regeneration may fail in a normal liver after acute severe injury such as acetaminophen poisoning. Bird and colleagues now show that a process that prevents proliferation termed senescence, which is classically associated with aging and carcinogenesis, inhibits the liver’s regenerative cells after acute injury. This senescence can be spread from cell to cell by the signaling molecule transforming growth factor–β (TGFβ). When TGFβ signaling was blocked during acetaminophen poisoning in mice, senescence was impeded, regeneration accelerated, and mouse survival increased. Therefore, targeting senescence induced by acute tissue injury is an attractive therapeutic approach to improve regeneration. Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury mouse model, a transcriptional signature associated with the induction of paracrine senescence was observed within 24 hours and was followed by one of impaired proliferation. In mouse genetic models of hepatocyte injury and senescence, we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended on macrophage-derived transforming growth factor–β1 (TGFβ1) ligand. In acetaminophen poisoning, inhibition of TGFβ receptor 1 (TGFβR1) improved mouse survival. TGFβR1 inhibition reduced senescence and enhanced liver regeneration even when delivered beyond the therapeutic window for treating acetaminophen poisoning. This mechanism, in which injury-induced senescence impairs liver regeneration, is an attractive therapeutic target for developing treatments for acute liver failure.
Nature Communications | 2018
Sofia Ferreira-Gonzalez; Wei-Yu Lu; Alexander Raven; Benjamin J. Dwyer; Tak Yung Man; Eoghan O’Duibhir; Philip J. Starkey Lewis; Lara Campana; Timothy Kendall; Tom Bird; Núria Tarrats; Juan Carlos Acosta; Luke Boulter; Stuart J. Forbes
Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFβ production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFβ-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFβ as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.Senescence has been suggested as causing biliary cholangiopathies but how this is regulated is unclear. Here, the authors generate a mouse model of biliary senescence by deleting Mdm2 in bile ducts and show that inhibiting TGFβ limits senescence-dependent aggravation of cholangiopathies.
Nature | 2018
Alexander Raven; Wei-Yu Lu; Tak Yung Man; Sofia Ferreira-Gonzalez; Eoghan O'Duibhir; Benjamin J. Dwyer; John P. Thomson; Richard R. Meehan; Roman L. Bogorad; Victor Koteliansky; Yuri Kotelevtsev; Charles ffrench-Constant; Luke Boulter; Stuart J. Forbes
This corrects the article DOI: 10.1038/nature23015
Hepatology | 2018
Jacquelyn O. Russell; Wei-Yu Lu; Hirohisa Okabe; Marc Abrams; Michael Oertel; Minakshi Poddar; Sucha Singh; Stuart J. Forbes; Satdarshan P.S. Monga
Liver regeneration after injury is normally mediated by proliferation of hepatocytes, although recent studies have suggested biliary epithelial cells (BECs) can differentiate into hepatocytes during severe liver injury when hepatocyte proliferation is impaired. We investigated the effect of hepatocyte‐specific β‐catenin deletion in recovery from severe liver injury and BEC‐to‐hepatocyte differentiation. To induce liver injury, we administered choline‐deficient, ethionine‐supplemented (CDE) diet to three different mouse models, the first being mice with deletion of β‐catenin in both BECs and hepatocytes (Albumin‐Cre; Ctnnb1flox/flox mice). In our second model, we performed hepatocyte lineage tracing by injecting Ctnnb1flox/flox; Rosa‐stopflox/flox‐EYFP mice with the adeno‐associated virus serotype 8 encoding Cre recombinase under the control of the thyroid binding globulin promoter, a virus that infects only hepatocytes. Finally, we performed BEC lineage tracing via Krt19‐CreERT; Rosa‐stopflox/flox‐tdTomato mice. To observe BEC‐to‐hepatocyte differentiation, mice were allowed to recover on normal diet following CDE diet–induced liver injury. Livers were collected from all mice and analyzed by quantitative real‐time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. We show that mice with lack of β‐catenin in hepatocytes placed on the CDE diet develop severe liver injury with impaired hepatocyte proliferation, creating a stimulus for BECs to differentiate into hepatocytes. In particular, we use both hepatocyte and BEC lineage tracing to show that BECs differentiate into hepatocytes, which go on to repopulate the liver during long‐term recovery. Conclusion: β‐catenin is important for liver regeneration after CDE diet–induced liver injury, and BEC‐derived hepatocytes can permanently incorporate into the liver parenchyma to mediate liver regeneration.