Takane Kikuchi
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takane Kikuchi.
Infection and Immunity | 2004
Xisheng Wang; Hoil Kang; Takane Kikuchi; Yasuhiro Suzuki
ABSTRACT We previously showed the requirement of both T cells and gamma interferon (IFN-γ)-producing non-T cells for the genetic resistance of BALB/c mice to the development of toxoplasmic encephalitis (TE). In order to define the role of IFN-γ production and the perforin-mediated cytotoxicity of T cells in this resistance, we obtained immune T cells from spleens of infected IFN-γ knockout (IFN-γ−/−), perforin knockout (PO), and wild-type BALB/c mice and transferred them into infected and sulfadiazine-treated athymic nude mice, which lack T cells but have IFN-γ-producing non-T cells. Control nude mice that had not received any T cells developed severe TE and died after discontinuation of sulfadiazine treatment due to the reactivation of infection. Animals that had received immune T cells from either wild-type or PO mice did not develop TE and survived. In contrast, nude mice that had received immune T cells from IFN-γ−/− mice developed severe TE and died as early as control nude mice. T cells obtained from the spleens of animals that had received either PO or wild-type T cells produced large amounts of IFN-γ after stimulation with Toxoplasma gondii antigens in vitro. In addition, the amounts of IFN-γ mRNA expressed in the brains of PO T-cell recipients did not differ from those in wild-type T-cell recipients. Furthermore, PO mice did not develop TE after infection, and their IFN-γ production was equivalent to or higher than that of wild-type animals. These results indicate that IFN-γ production, but not perforin-mediated cytotoxic activity, by T cells is required for the prevention of TE in genetically resistant BALB/c mice.
Frontiers in Microbiology | 2011
Mingqun Lin; Takane Kikuchi; Heather M. Brewer; Angela D. Norbeck; Yasuko Rikihisa
Anaplasma phagocytophilum and Ehrlichia chaffeensis are obligatory intracellular α-proteobacteria that infect human leukocytes and cause potentially fatal emerging zoonoses. In the present study, we determined global protein expression profiles of these bacteria cultured in the human promyelocytic leukemia cell line, HL-60. Mass spectrometric (MS) analyses identified a total of 1,212 A. phagocytophilum and 1,021 E. chaffeensis proteins, representing 89.3 and 92.3% of the predicted bacterial proteomes, respectively. Nearly all bacterial proteins (≥99%) with known functions were expressed, whereas only approximately 80% of “hypothetical” proteins were detected in infected human cells. Quantitative MS/MS analyses indicated that highly expressed proteins in both bacteria included chaperones, enzymes involved in biosynthesis and metabolism, and outer membrane proteins, such as A. phagocytophilum P44 and E. chaffeensis P28/OMP-1. Among 113 A. phagocytophilum p44 paralogous genes, 110 of them were expressed and 88 of them were encoded by pseudogenes. In addition, bacterial infection of HL-60 cells up-regulated the expression of human proteins involved mostly in cytoskeleton components, vesicular trafficking, cell signaling, and energy metabolism, but down-regulated some pattern recognition receptors involved in innate immunity. Our proteomics data represent a comprehensive analysis of A. phagocytophilum and E. chaffeensis proteomes, and provide a quantitative view of human host protein expression profiles regulated by bacterial infection. The availability of these proteomic data will provide new insights into biology and pathogenesis of these obligatory intracellular pathogens.
Journal of Bacteriology | 2007
Haibin Huang; Xueqi Wang; Takane Kikuchi; Yumi Kumagai; Yasuko Rikihisa
Anaplasma phagocytophilum, an obligatory intracellular bacterium that causes human granulocytic anaplasmosis, has significantly less coding capacity for biosynthesis and central intermediary metabolism than do free-living bacteria. Thus, A. phagocytophilum needs to usurp and acquire various compounds from its host. Here we demonstrate that the isolated outer membrane of A. phagocytophilum has porin activity, as measured by a liposome swelling assay. The activity allows the diffusion of L-glutamine, the monosaccharides arabinose and glucose, the disaccharide sucrose, and even the tetrasaccharide stachyose, and this diffusion could be inhibited with an anti-P44 monoclonal antibody. P44s are the most abundant outer membrane proteins and neutralizing targets of A. phagocytophilum. The P44 protein demonstrates characteristics consistent with porins of gram-negative bacteria, including detergent solubility, heat modifiability, a predicted structure of amphipathic and antiparallel beta-strands, an abundance of polar residues, and a C-terminal phenylalanine. We purified native P44s under two different nondenaturing conditions. When reconstituted into proteoliposomes, both purified P44s exhibited porin activity. P44s are encoded by approximately 100 p44 paralogs and go through extensive antigenic variation. The 16-transmembrane-domain beta-strands consist of conserved P44 N- and C-terminal regions. By looping out the hypervariable region, the porin structure is conserved among diverse P44 proteins yet enables antigenic variation for immunoevasion. The tricarboxylic acid (TCA) cycle of A. phagocytophilum is incomplete and requires the exogenous acquisition of L-glutamine or L-glutamate for function. Efficient diffusion of L-glutamine across the outer membrane suggests that the porin feeds the Anaplasma TCA cycle and that the relatively large pore size provides Anaplasma with the necessary metabolic intermediates from the host cytoplasm.
Infection and Immunity | 2008
Hai Huang; Mingqun Lin; Xueqi Wang; Takane Kikuchi; Heather M. Mottaz; Angela D. Norbeck; Yasuko Rikihisa
ABSTRACT Ehrlichia chaffeensis is an obligately intracellular gram-negative bacterium and is the etiologic agent of human monocytic ehrlichiosis (HME). Although E. chaffeensis induces the generation of several cytokines and chemokines by leukocytes, E. chaffeensis lacks lipopolysaccharide and peptidoglycan. Bioinfomatic analysis of the E. chaffeensis genome, however, predicted genes encoding 15 lipoproteins and 3 posttranslational lipoprotein-processing enzymes. The present study showed that by use of multidimensional liquid chromatography followed by tandem mass spectrometry, all predicted lipoproteins as well as lipoprotein-processing enzymes were expressed by E. chaffeensis cultured in the human promyelocytic leukemia cell line HL-60. Consistent with this observation, a signal peptidase II inhibitor, globomycin, was found to inhibit E. chaffeensis infection and lipoprotein processing in HL-60 cell culture. To study in vivo E. chaffeensis lipoprotein expression and host immune responses to E. chaffeensis lipoproteins, 13 E. chaffeensis lipoprotein genes were cloned into a mammalian expression vector. When the DNA constructs were inoculated into naïve dogs, or when dogs were infected with E. chaffeensis, the animals developed delayed-type hypersensitivity reactions at cutaneous sites of the DNA construct deposition and serum antibodies to these lipoproteins. This is the first demonstration of lipoprotein expression and elicitation of immune responses by a member of the order Rickettsiales. Multiple lipoproteins expressed by E. chaffeensis in vitro and in vivo may play key roles in pathogenesis and immune responses in HME.
Infection and Immunity | 2006
Xueqi Wang; Takane Kikuchi; Yasuko Rikihisa
ABSTRACT Anaplasma phagocytophilum is an obligatory intracellular bacterium that causes human granulocytic anaplasmosis. The polymorphic 44-kDa major outer membrane proteins of A. phagocytophilum are dominant antigens recognized by patients and infected animals. However, the ability of anti-P44 antibody to neutralize the infection has been unclear due to a mixture of P44 proteins with diverse hypervariable region amino acid sequences expressed by a given bacterial population and lack of epitope-defined antibodies. Monoclonal antibodies (MAbs) 5C11 and 3E65 are directed to different domains of P44 proteins, the N-terminal conserved region and P44-18 central hypervariable region, respectively. Passive immunization with either MAb 5C11 or 3E65 partially protects mice from infection with A. phagocytophilum. In the present study, we demonstrated that the two monoclonal antibodies recognize bacterial surface-exposed epitopes of naturally folded P44 proteins and mapped these epitopes to specific peptide sequences. The two MAbs almost completely blocked the infection of the A. phagocytophilum population that predominantly expressed P44-18 in HL-60 cells by distinct mechanisms: MAb 5C11 blocked the binding, but MAb 3E65 did not block binding or internalization. Instead, MAb 3E65 inhibited internalized A. phagocytophilum to develop into microcolonies called morulae. Some plasma from experimentally infected horses and mice reacted with these two epitopes. Taken together, these data indicate the presence of at least two distinct bacterial surface-exposed neutralization epitopes in P44 proteins. The results indicate that antibodies directed to certain epitopes of P44 proteins have a critical role in inhibiting A. phagocytophilum infection of host cells.
Journal of Bacteriology | 2007
Xueqi Wang; Zhihui Cheng; Chunbin Zhang; Takane Kikuchi; Yasuko Rikihisa
The natural life cycle of Anaplasma phagocytophilum, an obligatory intracellular bacterium that causes human granulocytic anaplasmosis, consists of alternate infection of two distinct hosts, ticks and mammals, in which bacterial surface proteins are expected to have a critical role. The present study investigated regulation of A. phagocytophilum p44 genes, which encode the P44 major surface proteins. Quantitative real-time reverse transcription-PCR analysis revealed that the amount of p44 mRNA obtained from spleens of A. phagocytophilum-infected SCID mice was approximately 10-fold greater than the amount obtained from salivary glands of A. phagocytophilum-infected Ixodes scapularis nymphs. Similarly, the amount of p44 mRNA obtained from A. phagocytophilum-infected HL-60 cells per bacterium was significantly greater than the amount obtained from infected ISE6 tick cells. The relative amount of p44 mRNA was approximately threefold higher in A. phagocytophilum-infected HL-60 cells cultured at 37 degrees C than in A. phagocytophilum-infected HL-60 cells cultured at 28 degrees C. Although there are more than 100 p44 paralogs, we observed expression mainly from the p44 expression locus (p44E) in various host environments. Interestingly, transcription of the A. phagocytophilum gene encoding the DNA binding protein ApxR was also significantly greater in A. phagocytophilum-infected HL-60 cells than in infected ISE6 tick cells. Gel mobility shift and DNase I protection assays revealed recombinant ApxR binding to the promoter regions of p44E and apxR. ApxR also transactivated the p44E and apxR promoter regions in a lacZ reporter assay. These results indicate that p44 genes and apxR are specifically up-regulated in the mammalian host environment and suggest that ApxR not only is positively autoregulated but also acts as a transcriptional regulator of p44E.
Journal of Bacteriology | 2007
Xueqi Wang; Takane Kikuchi; Yasuko Rikihisa
Anaplasma phagocytophilum, the etiologic agent of human granulocytic anaplasmosis, is an obligatory intracellular bacterium. Little is known about the gene regulatory mechanisms for this bacterium. A gene encoding a putative transcription factor, tr1, upstream of three tandem genes encoding outer membrane proteins, including the major outer membrane protein P44, is driven by a strong promoter. In the present study, gel mobility shift assays revealed the presence of A. phagocytophilum proteins that interact with the promoter region of tr1. These proteins interacting with the tr1 promoter region were purified by biotin-labeled DNA affinity chromatography from a large amount of host cell-free bacteria. Mass spectrometry identified the major protein as an A. phagocytophilum 12.5-kDa hypothetical protein, which was named ApxR. In a DNase I protection assay, recombinant ApxR (rApxR) bound cooperatively to four 24- or 25-bp sites within 235 bp upstream of tr1: regions III and IV proximal to tr1 had higher affinity than regions I and II did. Deletion assays showed that regions III and IV were essential for rApxR binding, whereas regions I and II upstream of regions III and IV were not. The primary cis-acting region was region IV, since region IV alone was sufficient for rApxR to strongly transactivate the downstream gene in a lacZ reporter assay. Addition of regions I, II, and III did not enhance transactivation. These results show that ApxR is a novel transcriptional regulator that directly regulates tr1.
Clinical and Vaccine Immunology | 2008
Chunbin Zhang; Qingming Xiong; Takane Kikuchi; Yasuko Rikihisa
ABSTRACT Ehrlichia ewingii, a tick-transmitted rickettsia previously known only as a canine pathogen, was recently recognized as a human pathogen. E. ewingii has yet to be cultivated, and there is no serologic test available to diagnose E. ewingii infection. Previously, a fragment (505 bp) of a single E. ewingii gene homologous to 1 of 22 genes encoding Ehrlichia chaffeensis immunodominant major outer membrane proteins 1 (OMP-1s)/P28s was identified. The purposes of the present study were to (i) determine the E. ewingii omp-1 gene family, (ii) determine each OMP-1-specific peptide, and (iii) analyze all OMP-1 synthesized peptides for antigenicity. Using nested touchdown PCR and a primer walking strategy, we found 19 omp-1 paralogs in E. ewingii. These genes are arranged in tandem downstream of tr1 and upstream of secA in a 24-kb genomic region. Predicted molecular masses of the 19 mature E. ewingii OMP-1s range from 25.1 to 31.3 kDa, with isoelectric points of 5.03 to 9.80. Based on comparative sequence analyses among OMP-1s from E. ewingii and three other Ehrlichia spp., each E. ewingii OMP-1 oligopeptide that was predicted to be antigenic, bacterial surface exposed, unique in comparison to the other E. ewingii OMP-1s, and distinct from those of other Ehrlichia spp. was synthesized for use in an enzyme-linked immunosorbent assay. Plasmas from experimentally E. ewingii-infected dogs reacted significantly with most of the OMP-1-specific peptides, indicating that multiple OMP-1s were expressed and immunogenic in infected dogs. The results support the utility of the tailored OMP-1 peptides as E. ewingii serologic test antigens.
International Immunology | 2006
Takahisa Furuta; Takane Kikuchi; Shizuo Akira; Naohiro Watanabe; Yasuhiro Yoshikawa
Journal of biomolecular techniques | 2008
Heather M. Mottaz-Brewer; Angela D. Norbeck; Joshua N. Adkins; Nathan P. Manes; Charles Ansong; Liang Shi; Yasuko Rikihisa; Takane Kikuchi; Scott W. Wong; Ryan D. Estep; Fred Heffron; Ljiljana Paša-Tolić; Richard D. Smith