Takashi Ashino
Showa University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Takashi Ashino.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Takashi Ashino; Masayuki Yamamoto; Takemi Yoshida; Satoshi Numazawa
Objective—Reactive oxygen species are important mediators for platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells, whereas excess reactive oxygen species–induced oxidative stress contributes to the development and progression of vascular diseases, such as atherosclerosis. Activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), is pivotal in cellular defense against oxidative stress by transcriptional upregulation of antioxidant proteins. This study aimed to elucidate the role of Nrf2 in PDGF-mediated vascular smooth muscle cell migration and neointimal hyperplasia. Approach and Results—PDGF promoted nuclear translocation of Nrf2, followed by the induction of target genes, including NAD(P)H:quinone oxidoreductase-1, heme oxygenase-1, and thioredoxin-1. Nrf2 depletion by small interfering RNA enhanced PDGF-promoted Rac1 activation and reactive oxygen species production and persistently phosphorylated downstream extracellular signal–regulated kinase-1/2. Nrf2 depletion enhanced vascular smooth muscle cell migration in response to PDGF and wound scratch. In vivo, Nrf2-deficient mice showed enhanced neointimal hyperplasia in a wire injury model. Conclusion—These findings suggest that the Nrf2 system is important for PDGF-stimulated vascular smooth muscle cell migration by regulating reactive oxygen species elimination, which may contribute to neointimal hyperplasia after vascular injury. Our findings provide insight into the Nrf2 system as a novel therapeutic target for vascular remodeling and atherosclerosis.
Journal of Neuroscience Research | 2011
H. Kondo; K. Kanda; Takashi Ashino; Tomoya Nakamachi; Kenji Sekikawa; Yoichiro Iwakura; Seiji Shioda; Satoshi Numazawa; Takemi Yoshida
We have developed an animal model of learning and memory impairment associated with activation of microglia in the mouse brain. Injection of lipopolysaccharide into the CA1 region of the mouse hippocampus resulted in an increased production of inflammatory cytokines, such as interleukin‐1β. Immunostaining for interleukin‐1β revealed an increase in the signal at 6 hr after lipopolysaccharide injection. Immunopositive cells for interleukin‐1β were colocalized with those immunopositive for CD11b. When subacute lipopolysaccharide treatment (20 μg/2 μl/injection, bilaterally for 5 consecutive days) was performed, long‐term activation of microglia and learning and memory deficits as evaluated using a step‐through passive avoidance test were observed in the wild‐type mice. Gene expression of the N‐methyl‐D‐aspartate receptor NR1 and NR2A subunits was also decreased by the lipopolysaccharide treatment. In contrast, activation of microglia and the associated behavioral deficits were not observed in mice lacking interleukin‐1α and ‐1β following the subacute lipopolysaccharide treatment, together with little change in the gene expression of NR1 and NR2A subunits. However, the subacute lipopolysaccharide treatment produced almost similar changes in those parameters in the tumor necrosis factor‐α knockout mice as in the wild‐type animals. The injection of interleukin‐1β neutralizing antibody with lipopolysaccharide for 5 consecutive days resulted in the improvement of lipopolysaccharide‐induced learning and memory deficits. These findings suggest that the expression of interleukin‐1 plays an important role in lipopolysaccharide‐induced activation of microglia and the associated functional deficits in learning and memory.
American Journal of Physiology-cell Physiology | 2013
Takashi Kohno; Norifumi Urao; Takashi Ashino; Varadarajan Sudhahar; Hyoe Inomata; Minako Yamaoka-Tojo; Ronald D. McKinney; Tohru Fukai; Masuko Ushio-Fukai
Platelet-derived growth factor (PDGF) stimulates vascular smooth muscle cell (VSMC) migration and neointimal formation in response to injury. We previously identified IQ-domain GTPase-activating protein 1 (IQGAP1) as a novel VEGF receptor 2 binding scaffold protein involved in endothelial migration. However, its role in VSMC migration and neointimal formation in vivo is unknown. Here we show that PDGF stimulation rapidly promotes IQGAP1 association with PDGF receptor-β (PDGFR) as well as IQGAP1 tyrosine phosphorylation in cultured VSMC. Overexpression or knockdown of IQGAP1 enhances or inhibits PDGFR autophosphorylation (p-PDGFR), respectively. Immunofluorescence and cell fractionation analysis reveals that PDGF-induced p-PDGFR localized in focal adhesions (FAs), but not caveolae/lipid rafts, is inhibited by IQGAP1 knockdown with siRNA. PDGF stimulation promotes IQGAP1 association with PDGFR/FA signaling protein complex. Functionally, IQGAP1 siRNA inhibits PDGF-induced FA formation as well as VSMC migration induced by PDGF. In vivo, IQGAP1 expression is markedly increased at neointimal VSMC in wire-injured femoral arteries. Mice lacking IQGAP1 exhibit impaired neointimal formation in response to vascular injury. In summary, IQGAP1, through interaction with PDGFR and FA signaling proteins, promotes activation of PDGFR in FAs as well as FA formation, which may contribute to VSMC migration and neointimal formation after injury. Our findings provide insight into IQGAP1 as a potential therapeutic target for vascular migration-related diseases.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2013
Takashi Kohno; Norifumi Urao; Takashi Ashino; Varadarajan Sudhahar; Ronald D. McKinney; Takao Hamakubo; Hiroko Iwanari; Masuko Ushio-Fukai; Tohru Fukai
Objective—Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation after vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. Approach and Results—Here, we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of the downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1−/− mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor–induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge, as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1−/− mice show decreased perivascular macrophage infiltration in wire-injured vessels, as well as thioglycollate-induced peritoneal macrophage recruitment. Conclusions—Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases.
Scientific Reports | 2016
Takashi Ashino; Masayuki Yamamoto; Satoshi Numazawa
Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury.
Biochemical and Biophysical Research Communications | 2009
Misaki Kojima; Takashi Ashino; Takemi Yoshida; Yoichiro Iwakura; Masashi Sekimoto; Masakuni Degawa
We examined the role of hepatic interleukin (IL)-1alpha/beta in serum total cholesterol homeostasis using male and female IL-1-knockout (KO) mice and wild-type (WT) mice. Serum total cholesterol level was higher in males than in females in WT and KO mice. The difference between sexes was closely correlated with the difference in gene expression level of cholesterol 7alpha-hydroxylase (Cyp7a1), a rate-limiting enzyme for bile acid synthesis. No significant sex difference in gene expression level of 3-hydroxy-3-methylglutaryl-CoA reductase, a rate-limiting enzyme for cholesterol synthesis, was observed in WT mice. Interestingly, the gene expression level of hepatic Cyp7a1 was lower in KO mice than in sex-matched WT mice, while the serum total cholesterol level was the opposite. The present findings demonstrate that IL-1alpha and IL-1beta are positive regulators for the Cyp7a1 gene in steady-state mice and that Cyp7a1 is one of the factors that mediate the difference in serum total cholesterol level between sexes.
Redox biology | 2014
Takashi Ashino; Haruyo Ohkubo-Morita; Masayuki Yamamoto; Takemi Yoshida; Satoshi Numazawa
Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.
FEBS Letters | 2005
Satoshi Numazawa; Sawako Shindo; Keiji Maruyama; Fumika Chibana; Yosuke Kawahara; Takashi Ashino; Sachiko Tanaka; Takemi Yoshida
Phenobarbital (PB) induction of CYP2B, a representative target gene of constitutive androstane receptor (CAR), has been observed to be attenuated in preneoplastic lesions of rat liver; however, molecular basis for this attenuation is poorly understood. In this report, we provide evidence indicating that the CAR expressed in the hepatic preneoplastic lesions of rats and mice was resistant to nuclear translocation and transactivation of the PB‐responsive enhancer module upon PB treatment. These observations suggest that the attenuation of the induction of CYP2B by PB in hepatic preneoplastic lesions is evidently a consequence of impaired nuclear translocation of CAR.
Forensic Toxicology | 2008
Nasrin Akhter; Sachiko Tanaka; Takashi Ashino; Noriaki Shima; Munehiro Katagi; Hitoshi Tsuchihashi; Anower Hussain Mian; Satoshi Numazawa; Takemi Yoshida
Some major metabolic pathways of 3,4-methylenedioxymethamphetamine (MDMA) have been shown to be dependent on cytochrome P450 (CYP) isozymes by in vitro studies. The aim of this study was to clarify the roles of these CYP enzymes for in vivo metabolism of MDMA with respect to two pathways using rats: N-demethylation of MDMA to 3,4-methylenedioxyamphetamine (MDA) and O-demethylenation of MDMA to 3,4-dihydroxymethamphetamine (HHMA)followed by O-methylation to 4-hydroxy-3-methoxymethamphetamine (HMMA). Rats were pretreated with phenobarbital (PB, 80 mg/kg i.p.) or β-naphthoflavone (BNF, 80 mg/kg i.p.) once a day for 3 days before administration of MDMA (10 mg/kg i.p.). Metabolic changes were monitored by measuring the urinary excretion of MDMA and its metabolites. Twenty-four hours after MDMA administration, MDA in rat urine was significantly decreased by 43% and 70%, and HMMA was significantly increased by 33% and 64% in urine samples from PB-pretreated and BNF-pretreated rats, respectively, as compared with the control values. Testosterone 6β-hydroxylase (CYP3A), pentoxyresorufin O-dealkylase (CYP2B1), ethoxyresorufin O-deethylase (CYP1A1), and methoxyresorufin O-demethylase (CYP1A2) activities were increased 2–6 fold in both PB-pretreated and BNF-pretreated rat liver microsomes sampled at 24 h after MDMA administration as compared with the control values. These results suggest that PB-induced and BNF-induced CYP enzymes have inhibitory effects on N-demethylation of MDMA to MDA in vivo in rats. If HHMA is the precursor of HMMA in rats, there is a possibility that the O-demethylenation of MDMA to HHMA is increased by the induced CYP enzymes. The decreased urinary concentration of MDMA and very low percent recoveries of MDA, HMMA, and (4-hydroxy-3-methoxyphenyl)acetone (HMPA) in the inducer-pretreated groups suggest that other metabolic pathways of MDMA exist and are activated under the present experimental conditions.
American Journal of Physiology-cell Physiology | 2018
Takashi Ashino; Takashi Kohno; Varadarajan Sudhahar; Dipankar Ash; Masuko Ushio-Fukai; Tohru Fukai
Vascular smooth muscle cell (VSMC) migration contributes to neointimal formation after vascular injury. We previously demonstrated that copper (Cu) transporter ATP7A is involved in platelet-derived growth factor (PDGF)-induced VSMC migration in a Cu- and Rac1-dependent manner. The underlying mechanism is still unknown. Here we show that ATP7A interacts with IQGAP1, a Rac1 and receptor tyrosine kinase binding scaffolding proteins, which mediates PDGF-induced VSMC migration and vascular remodeling. In cultured rat aortic SMCs, PDGF stimulation rapidly promoted ATP7A association with IQGAP1 and Rac1 and their translocation to the lipid rafts and leading edge. Cotransfection assay revealed that ATP7A directly bound to NH2-terminal domain of IQGAP1. Functionally, either ATP7A or IQGAP1 depletion using siRNA significantly inhibited PDGF-induced VSMC migration without additive effects, suggesting that IQGAP1 and ATP7A are in the same axis to promote migration. Furthermore, IQGAP1 siRNA blocked PDGF-induced ATP7A association with Rac1 as well as its translocation to leading edge, while PDGF-induced IQGAP1 translocation was not affected by ATP7A siRNA or Cu chelator. Overexpression of mutant IQGAP1 lacking a Rac1 binding site prevented PDGF-induced translocation of Rac1, but not ATP7A, to the leading edge, thereby inhibiting lamellipodia formation and VSMC migration. In vivo, ATP7A colocalized with IQGAP1 at neointimal VSMCs in a mice wire injury model, while neointimal formation and extracellular matrix deposition induced by vascular injury were inhibited in ATP7A mutant mice with reduced Cu transporter function. In summary, IQGAP1 functions as ATP7A and Rac1 binding scaffolding protein to organize PDGF-dependent ATP7A translocation to the lamellipodial leading edge, thereby promoting VSMC migration and vascular remodeling.