Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Takeo Minezaki is active.

Publication


Featured researches published by Takeo Minezaki.


Nature | 2005

Nucleosynthetic signatures of the first stars

Anna Frebel; Wako Aoki; Norbert Christlieb; Hiroyasu Ando; Martin Asplund; Paul Barklem; Timothy C. Beers; Kjell Eriksson; C. Fechner; Masayuki Y. Fujimoto; Satoshi Honda; Toshitaka Kajino; Takeo Minezaki; K. Nomoto; John E. Norris; Sean G. Ryan; Masahide Takada-Hidai; Stelios Tsangarides; Yuzuru Yoshii

The chemically most primitive stars provide constraints on the nature of the first stellar objects that formed in the Universe; elements other than hydrogen, helium and traces of lithium present within these objects were generated by nucleosynthesis in the very first stars. The relative abundances of elements in the surviving primitive stars reflect the masses of the first stars, because the pathways of nucleosynthesis are quite sensitive to stellar masses. Several models have been suggested to explain the origin of the abundance pattern of the giant star HE0107–5240, which hitherto exhibited the highest deficiency of heavy elements known. Here we report the discovery of HE1327–2326, a subgiant or main-sequence star with an iron abundance about a factor of two lower than that of HE0107–5240. Both stars show extreme overabundances of carbon and nitrogen with respect to iron, suggesting a similar origin of the abundance patterns. The unexpectedly low Li and high Sr abundances of HE1327–2326, however, challenge existing theoretical understanding: no model predicts the high Sr abundance or provides a Li depletion mechanism consistent with data available for the most metal-poor stars.


The Astrophysical Journal | 2009

The Lick AGN Monitoring Project: Broad-line Region Radii and Black Hole Masses from Reverberation Mapping of Hβ

Misty C. Bentz; Jonelle L. Walsh; Aaron J. Barth; Nairn Reese Baliber; Vardha N. Bennert; Gabriela Canalizo; Alexei V. Filippenko; Mohan Ganeshalingam; Elinor L. Gates; Jenny E. Greene; Marton G. Hidas; Kyle D. Hiner; Nicholas Lee; Weidong Li; Matthew A. Malkan; Takeo Minezaki; Yu Sakata; Frank J. D. Serduke; Jeffrey M. Silverman; Thea N. Steele; Daniel Stern; R. A. Street; Carol E. Thornton; Tommaso Treu; Xiaofeng Wang; Jong-Hak Woo; Yuzuru Yoshii

We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0: 05) Seyfert 1 galaxies with expected masses in the range � 10 6 -10 7 Mand also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to all ow for a time lag to be measured between the continuum fluctuations and the response to these fluctuation s in the broad Hemission. We present here the light curves for all the objects in this sample and the subseq uent Htime lags for the nine objects where these measurements were possible. The Hlag time is directly related to the size of the broad-line reg ion in AGNs, and by combining the Hlag time with the measured width of the Hemission line in the variable part of the spectrum, we determine the virial mass of the central sup ermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al., which brings the masses determined by reverberation mapping into agreement with the local MBH -�? relationship for quiescent galaxies. We also examine the time lag response as a function of velocity across the Hline profile for six of the AGNs. The analysis of four leads to rather ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad -line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple g ravitational infall model. Further investigation will be necessary to fully understand the constraints place d on physical models of the BLR by the velocity- resolved response in these objects. Subject headings:galaxies: active - galaxies: nuclei - galaxies: Seyfert


The Astrophysical Journal | 2004

SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst

Daniele Malesani; Gianpiero Tagliaferri; Guido Chincarini; S. Covino; M. Della Valle; Dino Fugazza; Paolo A. Mazzali; Filippo Maria Zerbi; Paolo D'Avanzo; S. Kalogerakos; A. Simoncelli; L. A. Antonelli; L. Burderi; Sergio Campana; A. Cucchiara; F. Fiore; G. Ghirlanda; Paolo Goldoni; Diego Gotz; S. Mereghetti; I. F. Mirabel; Patrizia Romano; L. Stella; Takeo Minezaki; Yuzuru Yoshii; K. Nomoto

Optical and near-infrared observations of the gamma-ray burst GRB 031203, at z = 0.1055, are reported. A very faint afterglow is detected superposed onto the host galaxy in our first infrared JHK observations, carried out ~9 hr after the burst. Subsequently, a rebrightening is detected in all bands, peaking in the R band about 18 rest-frame days after the burst. The rebrightening closely resembles the light curve of a supernova like SN 1998bw, assuming that the GRB and the SN went off almost simultaneously, but with a somewhat slower evolution. Spectra taken close to the maximum of the rebrightening show extremely broad features as in SN 1998bw. The determination of the absolute magnitude of this SN (SN 2003lw) is difficult owing to the large and uncertain extinction, but likely this event was brighter than SN 1998bw by 0.5 mag in the VRI bands, reaching an absolute magnitude MV = -19.75 ± 0.15.


The Astrophysical Journal | 2010

REVERBERATION MAPPING MEASUREMENTS OF BLACK HOLE MASSES IN SIX LOCAL SEYFERT GALAXIES

K. D. Denney; Bradley M. Peterson; Richard W. Pogge; A. Adair; David W. Atlee; K. Au-Yong; Misty C. Bentz; Jonathan C. Bird; D. J. Brokofsky; E. Chisholm; M. L. Comins; Matthias Dietrich; V. T. Doroshenko; Jason D. Eastman; Yu. S. Efimov; S. Ewald; S. Ferbey; C. M. Gaskell; C. H. Hedrick; K. Jackson; S.A. Klimanov; Elizabeth S. Klimek; A. K. Kruse; A. Ladéroute; J. B. Lamb; Karen M. Leighly; Takeo Minezaki; S. V. Nazarov; Christopher A. Onken; Eric A. Petersen

We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR–L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.


The Astrophysical Journal | 2010

The Lick AGN Monitoring Project: The M BH-σ* Relation for Reverberation-mapped Active Galaxies

Jong-Hak Woo; Tommaso Treu; Aaron J. Barth; Shelley A. Wright; Jonelle L. Walsh; Misty C. Bentz; Paul Martini; Vardha N. Bennert; Gabriela Canalizo; Alexei V. Filippenko; Ellinor Gates; Jenny E. Greene; Weidong Li; Matthew A. Malkan; Daniel Stern; Takeo Minezaki

To investigate the black hole mass versus stellar velocity dispersion (MBH-σ*) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca II triplet region (∼ 8500 A), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca II triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 106 < MBH/M⊙ < 109. We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the MBH-σ* relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σint = 0.43 ± 0.08 dex in the relation log(MBH/M⊙) = α + β log(σ*/200kms-1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH-σ* relation of quiescent galaxies; using the quiescent MBH-σ* relation determined by Gultekin etal., we find log f = 0.72 +0.09-0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determinations using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies.


The Astrophysical Journal | 2002

THE TYPE IC HYPERNOVA SN 2002AP

Paolo A. Mazzali; J. S. Deng; Keiichi Maeda; K. Nomoto; Hideyuki Umeda; Kazuhito Hatano; Koichi Iwamoto; Yuzuru Yoshii; Yukiyasu Kobayashi; Takeo Minezaki; Mamoru Doi; Keigo Enya; Hiroyuki Tomita; Stephen J. Smartt; Kenzo Kinugasa; Hideyo Kawakita; Kazuya Ayani; Takahiro Kawabata; Hitoshi Yamaoka; Y.-L. Qiu; Kentaro Motohara; Christopher Lowell Gerardy; Robert A. Fesen; Koji S. Kawabata; Masanori Iye; Nobunari Kashikawa; George Kosugi; Yoichi Ohyama; Masahide Takada-Hidai; Gang Zhao

Photometric and spectroscopic data of the energetic Type Ic supernova (SN) 2002ap are presented, and the properties of the SN are investigated through models of its spectral evolution and its light curve. The SN is spectroscopically similar to the hypernova SN 1997ef. However, its kinetic energy [~(4-10) ? 1051 ergs] and the mass ejected (2.5-5 M?) are smaller, resulting in a faster evolving light curve. The SN synthesized ~0.07 M? of 56Ni, and its peak luminosity was similar to that of normal SNe. Brightness alone should not be used to define a hypernova, whose defining character, namely very broad spectral features, is the result of high kinetic energy. The likely main-sequence mass of the progenitor star was 20-25 M?, which is also lower than that of both hypernovae SN 1997ef and SN 1998bw. SN 2002ap appears to lie at the low-energy and low-mass end of the hypernova sequence as it is known so far. Observations of the nebular spectrum, which is expected to dominate by the summer of 2002, are necessary to confirm these values.


The Astrophysical Journal | 2006

HE 1327?2326, an Unevolved Star with [Fe/H] < ?5.0. I. A Comprehensive Abundance Analysis

Wako Aoki; Anna Frebel; Norbert Christlieb; John E. Norris; Timothy C. Beers; Takeo Minezaki; Paul Barklem; Satoshi Honda; Masahide Takada-Hidai; Martin Asplund; Sean G. Ryan; Stelios Tsangarides; Kjell Eriksson; A. J. B. Steinhauer; Constantine P. Deliyannis; K. Nomoto; Masayuki Y. Fujimoto; Hiroyasu Ando; Yuzuru Yoshii; Toshitaka Kajino

HE 1327-2326, an Unevolved Star with [Fe/H] < -5.0. : I. A Comprehensive Abundance Analysis


The Astrophysical Journal | 2006

A reverberation-based mass for the central black hole in NGC 4151

Misty C. Bentz; K. D. Denney; Edward M. Cackett; Matthias Dietrich; Jeffrey K. J. Fogel; Himel Ghosh; K. Horne; Charles A. Kuehn; Takeo Minezaki; Christopher A. Onken; Bradley M. Peterson; Richard W. Pogge; V. I. Pronik; Douglas O. Richstone; S. G. Sergeev; Marianne Vestergaard; Matthew G. Walker; Yuzuru Yoshii

We have undertaken a new ground-based monitoring campaign to improve the estimates of the mass of the central black hole in NGC 4151. We measure the lag time of the broad H? line response compared to the optical continuum at 5100 ? and find a lag of 6.6 days. We combine our data with the recent reanalysis of UV emission lines by Metzroth and coworkers to calculate a weighted mean of the black hole mass, MBH = (4.57) ? 107 M?. The absolute calibration of the black hole mass is based on normalization of the AGN black hole mass-stellar velocity dispersion (MBH-?*) relationship to that of quiescent galaxies by Onken and coworkers. The scatter in the MBH-?* relationship suggests that reverberation-mapping-based mass measurements are typically uncertain by a factor of 3-4.


The Astrophysical Journal | 2005

Afterglows, redshifts, and properties of Swift gamma-ray bursts

Edo Berger; S. R. Kulkarni; Derek B. Fox; Alicia M. Soderberg; Fiona A. Harrison; Ehud Nakar; D. Kelson; Michael D. Gladders; John S. Mulchaey; Augustus Oemler; A. Dressler; S. B. Cenko; Paul A. Price; Brian Paul Schmidt; Dale A. Frail; Nidia I. Morrell; Sergio Gonzalez; Wojtek Krzeminski; Re'em Sari; Avishay Gal-Yam; D.-S. Moon; Bryan E. Penprase; Ray Jayawardhana; Alexander Scholz; Joshua Rich; Bruce A. Peterson; G. Anderson; R. H. McNaught; Takeo Minezaki; Yuzuru Yoshii

We present optical, near-IR, and radio follow-up of 16 Swift bursts, including our discovery of nine afterglows and a redshift determination for three. These observations, supplemented by data from the literature, provide an afterglow recovery rate of 52% in the optical/near-IR, much higher than in previous missions (BeppoSAX, HETE-2, INTEGRAL, and IPN). The optical/near-IR afterglows of Swift events are on average 1.8 mag fainter at t = 12 hr than those of previous missions. The X-ray afterglows are similarly fainter than those of pre-Swift bursts. In the radio the limiting factor is the VLA threshold, and the detection rate for Swift bursts is similar to that for past missions. The redshift distribution of pre-Swift bursts peaked at z ~ 1, whereas the six Swift bursts with measured redshifts are distributed evenly between 0.7 and 3.2. From these results we conclude that (1) the pre-Swift distributions were biased in favor of bright events and low-redshift events, (2) the higher sensitivity and accurate positions of Swift result in a better representation of the true burst redshift and brightness distributions (which are higher and dimmer, respectively), and (3) ~10% of the bursts are optically dark, as a result of a high redshift and/or dust extinction. We remark that the apparent lack of low-redshift, low-luminosity Swift bursts and the lower event rate than prelaunch estimates (90 vs. 150 per year) are the result of a threshold that is similar to that of BATSE. In view of these inferences, afterglow observers may find it advisable to make significant changes in follow-up strategies of Swift events. The faintness of the afterglows means that large telescopes should be employed as soon as the burst is localized. Sensitive observations in RIz and near-IR bands will be needed to discriminate between a typical z ~ 2 burst with modest extinction and a high-redshift event. Radio observations will be profitable for a small fraction (~10%) of events. Finally, we suggest that a search for bright host galaxies in untriggered BAT localizations may increase the chance of finding nearby low-luminosity GRBs.


The Astrophysical Journal | 2010

The lick AGN monitoring project: Reverberation mapping of optical hydrogen and helium recombination lines

Misty C. Bentz; Jonelle L. Walsh; Aaron J. Barth; Yuzuru Yoshii; Jong-Hak Woo; Xiaofeng Wang; Tommaso Treu; Carol E. Thornton; R. A. Street; Thea N. Steele; Jeffrey M. Silverman; Frank J. D. Serduke; Yu Sakata; Takeo Minezaki; Matthew A. Malkan; Weidong Li; Nicholas Lee; Kyle D. Hiner; Marton G. Hidas; Jenny E. Greene; Elinor L. Gates; Mohan Ganeshalingam; Alexei V. Filippenko; Gabriela Canalizo; Vardha N. Bennert; Nairn Reese Baliber

We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3 m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~106-107 M ☉ and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hβ emission, which we have previously reported. We present here the light curves for the Hα, Hγ, He II λ4686, and He I λ5876 emission lines and the time lags for the emission-line responses relative to changes in the continuum flux. Combining each emission-line time lag with the measured width of the line in the variable part of the spectrum, we determine a virial mass of the central supermassive black hole from several independent emission lines. We find that the masses are generally consistent within the uncertainties. The time-lag response as a function of velocity across the Balmer line profiles is examined for six of the AGNs. We find similar responses across all three Balmer lines for Arp 151, which shows a strongly asymmetric profile, and for SBS 1116+583A and NGC 6814, which show a symmetric response about zero velocity. For the other three AGNs, the data quality is somewhat lower and the velocity-resolved time-lag response is less clear. Finally, we compare several trends seen in the data set against the predictions from photoionization calculations as presented by Korista & Goad. We confirm several of their predictions, including an increase in responsivity and a decrease in the mean time lag as the excitation and ionization level for the species increases. Specifically, we find the time lags of the optical recombination lines to have weighted mean ratios of τ(Hα):τ(Hβ):τ(Hγ):τ(He I):τ(He II) = 1.54:1.00:0.61:0.36:0.25. Further confirmation of photoionization predictions for broad-line gas behavior will require additional monitoring programs for these AGNs while they are in different luminosity states.

Collaboration


Dive into the Takeo Minezaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge