Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshihiko Tanabe is active.

Publication


Featured researches published by Toshihiko Tanabe.


Publications of the Astronomical Society of Japan | 2007

The Infrared Astronomical Mission AKARI

Hiroshi Murakami; Hajime Baba; Peter D. Barthel; D. L. Clements; Martin Cohen; Yasuo Doi; Keigo Enya; Elysandra Figueredo; Naofumi Fujishiro; Hideaki Fujiwara; Mikio Fujiwara; Pedro Garcia-Lario; Tomotsugu Goto; Sunao Hasegawa; Yasunori Hibi; Takanori Hirao; Norihisa Hiromoto; Seung Soo Hong; Koji Imai; Miho Ishigaki; Masateru Ishiguro; Daisuke Ishihara; Yoshifusa Ita; Woong-Seob Jeong; Kyung Sook Jeong; Hidehiro Kaneda; Hirokazu Kataza; Mitsunobu Kawada; Toshihide Kawai; Akiko Kawamura

AKARI, the first Japanese satellite dedicated to infrared astronomy, was launched on 2006 February 21, and started observations in May of the same year. AKARI has a 68.5 cm cooled telescope, together with two focal-plane instruments, which survey the sky in six wavelength bands from mid- to far-infrared. The instruments also have a capability for imaging and spectroscopy in the wavelength range 2-180 mu m in the pointed observation mode, occasionally inserted into a continuous survey operation. The in-orbit cryogen lifetime is expected to be one and a half years. The All-Sky Survey will cover more than 90% of the whole sky with a higher spatial resolution and a wider wavelength coverage than that of the previous IRAS all-sky survey. Point-source catalogues of the All-Sky Survey will be released to the astronomical community. Pointed observations will be used for deep surveys of selected sky areas and systematic observations of important astronomical targets. These will become an additional future heritage of this mission.


The Astrophysical Journal | 2009

INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM

Shogo Nishiyama; Motohide Tamura; Hirofumi Hatano; Daisuke Kato; Toshihiko Tanabe; Koji Sugitani; Tetsuya Nagata

We have determined interstellar extinction law toward the Galactic center (GC) at the wavelength from 1.2 to 8.0 μm, using point sources detected in the IRSF/SIRIUS near-infrared (NIR) survey and those in the Two Micron All Sky Survey (2MASS) and Spitzer/IRAC/GLIMPSE II catalogs. The central region l 30 and b 10 has been surveyed in the J, H, and KS bands with the IRSF telescope and the SIRIUS camera whose filters are similar to the Mauna Kea Observatories (MKO) NIR photometric system. Combined with the GLIMPSE II point source catalog, we made KS versus KS – λ color-magnitude diagrams (CMDs) where λ=3.6, 4.5, 5.8, and 8.0 μm. The KS magnitudes of bulge red clump stars and the KS – λ colors of red giant branches are used as a tracer of the reddening vector in the CMDs. From these magnitudes and colors, we have obtained the ratios of total-to-selective extinction for the four IRAC bands. Combined with for the J and H bands derived by Nishiyama et al., we obtain AJ :AH ::A [3.6]:A [4.5]:A [5.8]:A [8.0] = 3.02:1.73:1:0.50:0.39:0.36:0.43 for the line of sight toward the GC. This confirms the flattening of the extinction curve at λ 3 μm from a simple extrapolation of the power-law extinction at shorter wavelengths, in accordance with recent studies. The extinction law in the 2MASS J, H, and KS bands has also been calculated, and good agreement with that in the MKO system is found. Thus, it is established that the extinction in the wavelength range of J, H, and KS is well fitted by a power law of steep decrease A λ ∝ λ–2.0 toward the GC. In nearby molecular clouds and diffuse interstellar medium, the lack of reliable measurements of the total-to-selective extinction ratios hampers unambiguous determination of the extinction law; however, observational results toward these lines of sight cannot be reconciled with a single extinction law.


Publications of the Astronomical Society of Japan | 2007

The Infrared Camera (IRC) for AKARI–Design and Imaging Performance

Takashi Onaka; Hideo Matsuhara; Takehiko Wada; Naofumi Fujishiro; Hideaki Fujiwara; Miho Ishigaki; Daisuke Ishihara; Yoshifusa Ita; Hirokazu Kataza; Woojung Kim; Toshio Matsumoto; Hiroshi Murakami; Youichi Ohyama; Shinki Oyabu; Itsuki Sakon; Toshihiko Tanabe; Toshinobu Takagi; Kazunori Uemizu; Munetaka Ueno; F. Usui; Hidenori Watarai; Martin Cohen; Keigo Enya; Takafumi Ootsubo; Chris P. Pearson; Norihide Takeyama; Tomoyasu Yamamuro; Yuji Ikeda

The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the nearto mid-infrared (1.8–26.5 m) in the pointed observation mode of AKARI. The IRC is also operated in the survey mode to make an All-Sky Survey at 9 and 18 m. It comprises three channels. The NIR channel (1.8–5.5 m) employs a 512 412 InSb array, whereas both the MIR-S (4.6–13.4 m) and MIR-L (12.6–26.5 m) channels use 256 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 100 100, and they are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about 250 away from the NIR/MIR-S field-of-view. The IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of the IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of the IRC.


The Astrophysical Journal | 2006

INTERSTELLAR EXTINCTION LAW IN THE J, H, AND Ks BANDS TOWARD THE GALACTIC CENTER

Shogo Nishiyama; Tetsuya Nagata; Nobuhiko Kusakabe; Noriyuki Matsunaga; Takahiro Naoi; Daisuke Kato; Chie Nagashima; Koji Sugitani; Motohide Tamura; Toshihiko Tanabe; S. Sato

We have determined the ratios of total to selective extinction in the near-infrared bands (J,H,Ks) toward the Galactic center from the observations of the region l 20 and 05 b 10 with the IRSF telescope and the SIRIUS camera. Using the positions of red clump stars in color-magnitude diagrams as a tracer of the extinction and reddening, we determine the average of the ratios of total to selective extinction to be A/E = 1.44 ± 0.01, A/E = 0.494 ± 0.006, and AH/EJ-H = 1.42 ± 0.02, which are significantly smaller than those obtained in previous studies. From these ratios, we estimate that AJ : AH : A = 1 : 0.573 ± 0.009 : 0.331 ± 0.004 and EJ-H/E = 1.72 ± 0.04, and we find that the power law Aλ ∝ λ-1.99±0.02 is a good approximation over these wavelengths. Moreover, we find a small variation in A/E across our survey. This suggests that the infrared extinction law changes from one line of sight to another, and the so-called universality does not necessarily hold in the infrared wavelengths.


Monthly Notices of the Royal Astronomical Society | 2004

Variable stars in the Magellanic Clouds: results from OGLE and SIRIUS

Yoshifusa Ita; Toshihiko Tanabe; Noriyuki Matsunaga; Yasushi Nakajima; Chie Nagashima; Takahiro Nagayama; Daisuke Kato; Mikio Kurita; Tetsuya Nagata; Shuji Sato; Motohide Tamura; Hidehiko Nakaya; Yoshikazu Nakada

We have performed a cross-identification between Optical Gravitational Lensing Experiment II (OGLE-II) data and single-epoch Simultaneous three-colour Infrared Imager for Unbiased Surveys (SIRIUS) near-infrared (NIR) JHK survey data in the Large and Small Magellanic Clouds (LMC and SMC, respectively). After eliminating obvious spurious variables, variables with too few good data and variables that seem to have periods longer than the available baseline of the OGLE-II data, we determined the pulsation periods for 8852 and 2927 variables in the LMC and SMC, respectively. Based on these homogeneous data, we studied the pulsation properties and metallicity effects on period–K magnitude (PK) relations by comparing the variable stars in the LMC and SMC. The sample analysed here is much larger than the previous studies, and we found the following new features in the PK diagram. (1) Variable red giants in the SMC form parallel sequences on the PK plane, just like those found by Wood in the LMC. (2) Both sequences A and B of Wood have discontinuities, and they occur at the K-band luminosity of the tip of the red giant branch. (3) The sequence B of Wood separates into three independent sequences B± and C′. (4) A comparison between the theoretical pulsation models and observational data suggests that the variable red giants on sequences C and newly discovered C′ are pulsating in the fundamental and first overtone modes, respectively. (5) The theory cannot explain the pulsation mode of sequences A± and B±, and they are unlikely to be the sequences for the first and second overtone pulsators, as was previously suggested. (6) The zero-points of PK relations of Cepheids in the metal deficient SMC are fainter than those of the LMC by ≈0.1 mag but those of SMC Miras are brighter than those of the LMC by ≈0.13 mag (adopting the distance modulus offset between the LMC and SMC to be 0.49 mag and assuming the slopes of the PK relations are the same in the two galaxies), which are probably due to metallicity effects.


The Astrophysical Journal | 2006

Fe II Emission in 14 Low-Redshift Quasars. I. Observations

Yumihiko Tsuzuki; Kimiaki Kawara; Yuzuru Yoshii; Shinki Oyabu; Toshihiko Tanabe; Yoshiki Matsuoka

We present the spectra of 14 quasars with a wide coverage of rest wavelengths from 1000 to 7300 A. The redshift ranges from z = 0.061 to 0.555 and the luminosity from M_{B} = -22.69 to -26.32. We describe the procedure of generating the template spectrum of Fe II line emission from the spectrum of a narrow-line Seyfert 1 galaxy I Zw 1 that covers two wavelength regions of 2200-3500 A and 4200-5600 A. Our template Fe II spectrum is semi-empirical in the sense that the synthetic spectrum calculated with the CLOUDY photoionization code is used to separate the Fe II emission from the Mg II line. The procedure of measuring the strengths of Fe II emission lines is twofold; (1) subtracting the continuum components by fitting models of the power-law and Balmer continua in the continuum windows which are relatively free from line emissions, and (2) fitting models of the Fe II emission based on the Fe II template to the continuum-subtracted spectra. From 14 quasars, we obtained the Fe II fluxes in five wavelength bands, the total flux of Balmer continuum, and the fluxes of Mg II, Halpha, and other emission lines, together with the full width at half maxima (FWHMs) of these lines. Regression analysis was performed by assuming a linear relation between any two of these quantities. Eight correlations were found with a confidence level higher than 99%. The fact that six of these eight are related to FWHM or M_{BH} may imply that M_{BH} is a fundamental quantity that controls Gamma or the spectral energy distribution (SED) of the incident continuum, which in turn controls the Fe II emission. Furthermore, it is worthy of noting that Fe II(O1)/Fe II(U1) is found to tightly correlate with Fe II(O1)/Mg II, but not with Fe II(U1)/Mg II.


The Astrophysical Journal | 2005

A Distinct Structure inside the Galactic Bar

Shogo Nishiyama; Tetsuya Nagata; Daisuke Baba; Yasuaki Haba; Ryota Kadowaki; Daisuke Kato; Mikio Kurita; Chie Nagashima; Takahiro Nagayama; Yuka Murai; Yasushi Nakajima; Motohide Tamura; Hidehiko Nakaya; Koji Sugitani; Takahiro Naoi; Noriyuki Matsunaga; Toshihiko Tanabe; Nobuhiko Kusakabe; S. Sato

We present the result of a near-infrared (JHKs) survey along the Galactic plane, -105 ≤ l ≤ 105 and b = +1°, with the IRSF 1.4 m telescope and the SIRIUS camera. Ks versus H - Ks color-magnitude diagrams reveal a well-defined population of red clump stars whose apparent magnitude peak changes continuously along the Galactic plane, from Ks = 13.4 at l = -10° to Ks = 12.2 at l = 10° after dereddening. This variation can be explained by the barlike structure found in previous studies, but we find an additional inner structure at l 4°, where the longitude-apparent magnitude relation is distinct from the outer bar and where the apparent magnitude peak changes by only ≈0.1 mag over the central 8°. The exact nature of this inner structure is as yet uncertain.


Monthly Notices of the Royal Astronomical Society | 2004

Variable stars in the Magellanic Clouds – II. The data and infrared properties

Yoshifusa Ita; Toshihiko Tanabe; Noriyuki Matsunaga; Yasushi Nakajima; Chie Nagashima; Takahiro Nagayama; Daisuke Kato; Mikio Kurita; Tetsuya Nagata; Shuji Sato; Motohide Tamura; Hidehiko Nakaya; Yoshikazu Nakada

The data of 8852 and 2927 variable stars detected by the OGLE survey in the Large and Small Magellanic Clouds are presented. They are cross-identified with the SIRIUS JHK survey data, and their infrared properties are discussed. Variable red giants are well separated on the period-(J - K) plane, suggesting that it could be a good tool to distinguish their pulsation mode and type.


Monthly Notices of the Royal Astronomical Society | 2009

Asymptotic giant branch stars in the Fornax dwarf spheroidal galaxy

Patricia A. Whitelock; John W. Menzies; M. W. Feast; Noriyuki Matsunaga; Toshihiko Tanabe; Yoshifusa Ita

We report on a multi-epoch study of the Fornax dwarf spheroidal galaxy, made with the Infrared Survey Facility, over an area of about 42 × 42 arcmin 2 . The colour–magnitude diagram shows a broad well-populated giant branch with a tip that slopes downwards from red to blue, as might be expected given Fornax’s known range of age and metallicity. The extensive asymptotic giant branch (AGB) includes seven Mira variables and 10 periodic semiregular variables. Five of the seven Miras are known to be carbon rich. Their pulsation periods range from 215 to 470 d, indicating a range of initial masses. Three of the Fornax Miras are redder than typical Large Magellanic Cloud (LMC) Miras of similar period, probably indicating particularly heavy mass-loss rates. Many, but not all, of the characteristics of the AGB are reproduced by isochrones from Marigo et al. for a 2 Gyr population with a metallicity of Z = 0.0025. An application of the Mira period–luminosity relation to these stars yields a distance modulus for Fornax of 20.69 ± 0.04 (internal), ±0.08 (total) (on a scale that puts the LMC at 18.39 mag) in good agreement with other determinations. Various estimates of the distance to Fornax are reviewed.


Astronomy and Astrophysics | 2005

Broad-band photometric colors and effective temperature calibrations for late-type giants - I. Z = 0.02

Arunas Kucinskas; P. H. Hauschildt; Hans-Günter Ludwig; I. Brott; Vladas Vansevičius; Lennart Lindegren; Toshihiko Tanabe; F. Allard

We investigate the effects of metallicity on the broad-band photometric colors of late-type giants, and make a comparison of synthetic colors with observed photometric properties of late-type giants over a wide range of effective temperatures (T-eff = 3500- 4800K) and gravities (log g = 0.0-2.5), at [M/H] = -1.0 and -2.0. The influence of metallicity on the synthetic photometric colors is small at effective temperatures above similar to 3800K, but the effects grow larger at lower T-eff,T- due to the changing effciency of molecule formation which reduces molecular opacities at lower [M/H]. To make a detailed comparison of the synthetic and observed photometric colors of late type giants in the T-eff-color and color-color planes (which is done at two metallicities, [M/H] = -1.0 and -2.0), we derive a set of new T-eff-log g-color relations based on synthetic photometric colors, at [M/H] = -0.5, -1.0, -1.5, and -2.0. These relations are based on the T-eff- log g scales that we derive employing literature data for 178 late-type giants in 10 Galactic globular clusters (with metallicities of the individual stars between [M/H] = -0.7 and -2.5), and synthetic colors produced with the PHOENIX, MARCS and ATLAS stellar atmosphere codes. Combined with the T-eff- log g-color relations at [M/H] = 0.0 (Kucinskas et al. 2005), the set of new relations covers metallicities [M/H] = 0.0... -2.0 ([M/H] = 0.5), effective temperatures T-eff = 3500... 4800 K (T-eff = 100K), and gravities log g = - 0.5... 3.0. The new T-eff- log g-color relations are in good agreement with published T-eff-color relations based on observed properties of late-type giants, both at [M/H] = -1.0 and -2.0. The differences in all T-eff- color planes are typically well within similar to 100K. We find, however, that effective temperatures predicted by the scales based on synthetic colors tend to be slightly higher than those resulting from the T-eff- color relations based on observations, with the offsets up to similar to 100 K. This is clearly seen both at [M/H] = -1.0 and -2.0, especially in the T-eff-(B - V) and T-eff-(V - K) planes. The consistency between T-eff- log g-color scales based on synthetic colors calculated with different stellar atmosphere codes is very good, with typical differences being well within. Delta T-eff similar to 70 K at [M/H] = - 1.0 and. T-eff similar to 40 K at [M/H] = -2.0. (Less)

Collaboration


Dive into the Toshihiko Tanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge